Start/Stop Codes

Steven Pigeon
Université de Montréal
pigeon@iro.umontreal.ca

Abstract

We introduce the Start/Stop codes, a generalization of (Start, Step, Stop) codes [Fiala 89].
Start/Stop codes can be optimized to minimize average code length according to a dis-
tribution function. The optimization can take into account machine limitations to al-
low fast encoding or decoding. They can also be used as efficient universal codes. In
this paper, we present average code length functions and optimization methods for both
(Start, Step, Stop) and Start/Stop codes. We also show that on non-increasing distribution
functions, Start/Stop codes perform nearly as well as Huffman codes.

1 Introduction

(Start, Step, Stop) codes were introduced as an efficient mean of encoding offsets and lengths in
a dictionary-based compression scheme [Fiala 89]. They did not, however, specify how to opti-
mize these codes nor which class of distribution they fit best. Due to their internal structure,
(Start, Step, Stop) codes can only perform well with integers drawn from a strictly non-increasing
distribution function. Futhermore, as the internal structure of the (Start, Step, Stop) codes is
somewhat rigid, as we will explain in the next section, the same codebook can be generated for
many different distributions. In this paper, we present a variation, the Start/Stop codes, that
removes most of the rigidity of the (Start, Step, Stop) codes. The Start/Stop codes have more
flexibility because codebook generation is not controlled by only one parameter, Step, but by
as many parameters as needed. This, we will explain in detail in section 3.

In section 2 and 3, we present in detail the structure of both types of codes and of the
corresponding optimization algorithms. Codebooks, from both types of codes, resulting from
optimization, will be compared against Huffman codebooks generated from the same test dis-
tributions.

2 Structure and optimization of (Start, Step, Stop) codes

A (Start, Step, Stop) code is completely characterized by its three non negative integer parame-
ters, Start, Step and Stop. The parameter Stop is of the form Start + k... Step, for kpe: € N
The codes are bipartite. They are composed of a prefix that is the truncated unary coding of &,
and of a suffix of Start + k Step bits that encodes the integer itself, minus the number of codes
that preceed the first code of the k *® code bank. The Start parameter specifies the starting
length of the suffixes. The Step parameter specifies how many bits are added in each new bank,
so that the suffix length grows in function of &, the bank number. The suffix length are always
of the form Start + k Step. Finally, Stop, or rather k] .., controls the maximum length of the
suffixes. The parameter k] .. is chosen so that all the integers in the wanted range receive a

code. A (3,2,9) code (an example from [Fiala 89]) would be of the form

Code Range

[0 [z2 @1 o] 0-7
|1 0 [2s 23 22 m1 =0 8 -39
[1 1 0[ws @5 x4 o3 @3 71 a0 | 40 - 167
|1 1 1]as o7 @6 @5 @4 @3 Ty T1 o | 168 — 699

where the last prefix is 111 rather than 1110. Using 1110 would waste a bit since we know that
there are only four code banks: after having read 3 bits to 1, we know that we are in the last
code bank.

Let I(k) and h(k) be such that [(0) = 0 and

9Start+(k+1)Step _ 9Start
I(k+1) = h(k) =

9step _ 1 (1)
the lower and upper bounds of the k' bank. In the k" bank, all codes will be allocated to
integers [(k) < i < h(k). If0,... , N —1 is the range of the integers to code, the parameters will
be chosen so that h(kpqez) = N. This ensures that all integers receive a code. The code for 7 is
given by

C(Start,Step,Stop) (7') = Céz(k:mm)(k(i)) : Cﬂ(staTt+k(i)Step) (Z - l(k(l)))

where Cg) (i) is the k-truncated unary code of i, that is, the unary code of i, using upto k bits
long, and Cg(p)(i) is the natural binary code for (i mod 2") on n bits. This notation follows
the notation of Elias [Elias 75]. The code bank containing ¢ is given by

(2)

, lg (i(25tP — 1) — 25tert) _ Start
k(i) = { (Step) -1

a result obtained by solving I(k) < i for the largest k¥ and where lg z is shorthand for log, z. The
average code length for a random variable X and parameters Start, Step, and Stop is given by

_ kmaz
L(Start,Step,Stop) (X) = Zk:o P(l(k) <X< h(k))L(Start,Step,Stop) (.’L‘ | k)

- ZZZ” PI(K) < X < h(k))(min(kmaz, k + 1) + Start + k Step))
= Start + 1+ (Step+ 1)E[k] — P(l(kmaz) < X < h(kmaz))

The best distribution function for this type of code is a piecewise uniform distribution where
the pieces are distributed exponentially, that is,
PX=2)=PX=z|k)P(K=k)
— 2—(Start+(k(z)+1)5tep) 2—min(kmm,k(z)+1)

which is straightforward to show. The information contents of the prefix bits is maximized
when the k ™ bank is half as likely as the k£ — 1 *® bank, that is, banks are distributed accord-
ing to a probability of P(K = k) = 2~ ™"(kmaessk+1) for the k* bank. Equal suffix lengths
within a bank suggest that the information contents of the bits are maximized when the num-
bers within a bank are drawn uniformely, giving a probability for each number in bank %k of
P(X =7 | k) — 9—(Start+k Step)

The optimization of the (Start, Step, Stop) codes consists in finding Start, Step, and Stop
that both minimize average code length according to the random variable X and satisfies the
constraint that h(kma.e) < N when the range of the integer to code is 0,... , N — 1. If we have
an analytic expression for P(X =) we can find a closed form for eq.(3), and use its derivatives
relative to Start and Stop to find the best possible parameters that minimize eq.(3) while satis-
fying the constraint that all integer receive a code. If P(X = z) is a non-increasing distribution
function, eq.(3) is a concave function and we use any zero-finding algorithm to find the best
parameters.

This is not always possible because oftentimes we do not know the parameters of the random
variable X nor even its class, we can only gather observations drawn from X in an histogram.
Let CDF(z) = P(X < z), the cumulative distribution function. The CDF is computed in
O(N) from the histogram entries. Using the CDF' will partially compensate for holes in the
histogram that may result from unsufficient sampling. Since Start + Step < [lg N, one can
easily consider examining all of the O((lg N)?) possible values for Start and Step. Checking
the constraint amounts to verify if there exists a k such that h(k) > N, (using either eq.(1) or
eq-(2)). Computing average code length with eq.(3) is done in O(lg N) steps. It suffices to use
the CDF to compute P(I < X < h) since P(l < X < h) =CDF(h—1) — CDF(l — 1). This
result in an exact optimization of the (Start, Step, Stop) code in O(N + (g N)?) steps, if the
CDF is not already available, and in O((Ig N)?) otherwise.

3 Structure and Optimization of Start/Stop Codes

The (Start, Step, Stop) codes are overly rigid because they constrain the code lengths to be of
the form min(k, 4z, k+1) + Start+k Step. Rather than starting with Start bits and adding Step
bits to each new code bank, we will allow the number of bits that are added to be variable. Let
{mo,m1,... ,mp: __}, m; € Z*, be the parameters of the Start/Stop code. The code lengths

oz b+ 1)+ Ef:o m;, which much more flexible. For example,
a Start/Stop code of parameters {0,3,2,0} would look like

will now be of the form min(k!

Code Range
[0] 0

[1 0]z z1 1-8
[1 1 0]zs z3 22 a1 30| 9-40

|]. 1 1 |.’L'4 r3 Yo 1 IL'0| 41 - 72

Similarly to the (Start, Step, Stop) codes, we define I'(0) = 0 but

' / k i omy
Uk+1) =n(k) =) 2%

The functions I'(k) and h'(k) are the lower and upper bounds of the k ** Start/Stop code
bank. We will also need the function &'(¢) = max{k |l'(k) < i}, the index of the code bank con-
taining ¢, an integer to code. The function k'(7) can be tabulated and searched. The tabulation
will require O(lg V) integers to be stored, and search will be in O(lglg N) time. The code for 4
is given by

Ctmon...myy . Y0 = Caay,,) (K (@) : Cgsoi_ iy (@ = V(K (0)))

The average length function is given by

_ kfmam . k
L{mo,ml,...,mkinw}(X) = Zk:() P(l’(k) <X< h,l(k)) (mzn(k;mm, k+ 1) + Zj:o mj> (4)

which doesn’t simplify much. Here also, the task is to choose the parameters that minimize
average code length while satisfying the constraint that h'(kl,,,) = N, where 0,... ,N — 1 is
the range of integers to encode.

3.1 Greedy optimization of Start/Stop codes

One possible course of action is to optimize first for mg, then for mi, upto my:_ _ in a greedy
fashion. The optimization procedure uses the C DF again, that is, CDF(z) = P(X < z), which
is computed in O(N). Finding mg such that P(X < 2™) = 1 asks for O(Ig N) operations
since it suffice to find the closest cut to % with the CDF'. To find m;, we try to minimize the
difference between P(X < 2™0 4 2motmi | X > 2m0) and L in the same way, and so on until the
constraint h'(k],,,) > N is satisfied. Note that the m; may be zeroes, but this is not a problem
since the range of representable numbers still grows by 2201<;™ ag a new bank is added to the
code. The number of cuts made by the algorithm depends on the distribution. For a distribution
of the type P(X = z) ~ 27%, we will have to do O(N) cuts, which is prohibitive! Furthermore,
the Start/Stop code will degenerate in a unary code. Setting the maximum number of cuts to
O(lg N) will keep the optimization procedure from degenerating. Since we have at most O(lg N)

cuts, each being computed in at most O(lg N) steps, for a total of O((Ig N)?).

This optimization method gives good results, as we see in section 5, but because the opti-
mality principle does not apply in this case, it may fail to discover the best parameter set.

3.2 Combinatorial optimization of Start/Stop codes

One may consider minimizing eq.(4) exactly by examining all possible sets of parameters that
satisfy the constraint that all integers in the range 0,... , N — 1 receive a code. Let n = [Ig N

and M be the maximum number of parameters to optimize. The number of combination to
examine, if we set Z].Aigl m; =n, is given by

o =3 ("N = (1) 5

which is found using binomial identities. As fearful as it seems, this function does not grow as
fast as one may think. Using Sterling’s approximation for n! we find that

1
V2T

where terms nearly cancel each other out. For g(16,4) we find 1140, for ¢(32,4) = 7140, etc.
Search can be further pruned whenever we find a partial solution that gives a larger average
code length than the best solution found so far.

g(n, M) ~ (M —1)2"M(n 1) (M 4)z tM+n

If the CDF is already computed, we have an algorithm in O(g(n, M) M). The brutal com-
putation of eq.(4) is O(M?), but we can get it down to O(M). Since we have M parameters,
klow = M — 1. We can compute P(I'(k) < X < h'(k))(min(k +1,M — 1) + 2?20 m;) from
P(l'(k—1) < X < I (k—1))(min(k, M — 1) + Y55 m;) in O(1). We have I'(k) = I'(k — 1),

which requires only an assignment, this is O(1). We also have that h'(k) = I'(k) + 2% 5=0 ™ ;
if we replace this identity by h'(k) = I'(k) + 25(F) where S(k) = S(k — 1) + my, h'(k) can be
computed in O(1) from I'(k). P(a < X < b) itself is O(1) if @ and b are already computed.
Finally, computing code length is O(1) since we can compute the length of the k *® bank by
adding my+1 (or just my, if k = k., = M —1) to the length of the k—1 *! bank. We repeat this
series of computation M times, giving O(M) computation of the average code length provided
the CDF is already computed and that integer arithmetic operations are O(1) (which may not
be true if the integers get really large).

Since this algorithm examine exhaustively all possible combinations, it is garanteed to find
the best possible set of M parameters. The results are presented in section 5 where it is compared
to the (Start, Step, Stop) codes and the Start/Step codes optimized with the greedy algorithm.

3.3 Optimization of Start/Stop codes for efficient coding and decoding

We may have to consider further constraining the optimization of a code to better suit the
underlying machinery. In addition to satisfying h'(k/,,.) = N, the code parameters could also
satisfy a constraint of the form

min(k! .., k+1 +Z ,m; =0 (mod b)

where b € N is some number of bits that is friendly to the machine, say 4 or 8. In this way,
we may reduce the number of bit-oriented manipulations needed to extract (or emit) the code
from (to) the compressed data. The resulting parameters can then be used to generate actual
computer language code for the coding and decoding routines. For example, for a hypothetical
distribution, if we set b = 4, we could obtain {3, 3,3,0} as parameters, giving a code structured
as follows:

[0 =z 1 | 0-7
|1 0 25 x4z 22 21 20| 8- 171
|1 1 0 azs|xr @6 &5 x4 |x3 T2 x1 X0 | 72 - 583
1 1 1 zg|ar @6 &5 x4 |x3 T2 x1 X0 | 584 — 1096

which is readily used for efficient coding and decoding. If we constrain M < b, we have can read
(or write) the prefix in a single block of b bits, and therefore determine the length of the code
before reading (writing) the rest in a single operation.

4 (Start, Step, Stop) and Start/Stop codes as universal codes

A universal code is a code that can be used for arbitrarily large integers. We assume that the
integers are drawn from a distribution such that if z < y then P(X = z) > P(X = y), and
P(X =2x)#0,Vz € Z*. A universal code must satisfy

> P(X =x)L(x)

=K>1
Y P(X =x)lgx -

were K exists, and L.(x) is the length of the code for x. The closest to one K is, the more
efficient the code is. The Kraft-McMillan theorems state that K > 1, otherwise the code would
be ambiguous or undecipherable. In pratice, since the conditions on the distribution are not
sufficient to completely specify it, we rather calculate the limit of the ratio L.(z)/1g(z) to obtain
the universality constant K.

We will show that both (Start, Step, Stop) and Start/Stop codes can be used as universal
codes.

A (Start, Step, Stop) code with parameters (Start, Step, c0) with Start > 0 and Step > 0
will provide a universal code. This kind of universal code can be made as efficient as wanted by
controling Step. The code length for n € Z* is given by

L(start,Step,o0) (N) = Start + (k(n) + 1) + k(n)Step
= Start + 1+ (Step + 1)k(n)

and k(n) is given by eq.(2). It follows that, for a very large n,

L(start,Step,00)(n) = Start + 1 + (Step + 1)k(n)
Ig(n(25t" — 1) — 25%t) — Start 1)

~ Start + 1+ (Step+ 1) (

Step
| tep —
~ Start + 1+ (Step + 1) (gn + Step — Start 1)
Step
St 1
= Start + 1+ otep+1 (lgn — Start)

Step

and the universality constant is given by the limit

li L(Start,Step,oo) (n) Step +1 1
lm = =
z—00 lgn Step Step

which can be made arbitrarily close to 1. To get an efficient code for the small integers, we can
optimize Start and Step with the constraint that Step > 0. This will give us an universal code
with universality constant of (Step + 1)/Step that is still efficient with small integers.

We can do the same with Start/Stop codes. The parameters of a Start/Stop code are given

by {mo,m1,... ,mp _}, withm; € Z*,Vj € {0,... , k), ., }. These parameters will allow us to
efficiently code a finite number of integers, from zero upto h'(kl,,,) — 1 (which may be larger
than N —1). Allowing an infinite parameter set, of the form {mg, m1,... ,mg, Mp41,Mpg1,.-.}

with mg41 > 0, will tranform a Start/Stop code into a universal code. The first k + 1 param-
eters are optimized on the useful range of numbers, and a parameter myy; > 0 is chosen to
prolongate the code in the advent of a very large number needs to be coded.

Neglecting the first few parameters, the Start/Stop code of a verly large integer n € N be-
comes essentially its base 2™++1 representation, preceeded by a prefix that encodes the length of
the representation. The base 2™#+! representation will require log,mi41 n base 2™ +1 “digits”. As
each “digits” requires my1 bits to be represented, we have that my;1 logymii1 n =1gn, that is,
lg n bits are required. The prefix being (1gn)/my.1 bits long (since there are (Ign)/my.1 blocks
of myp41 bits in the suffix), the total code length is O(lgn +1gn)/mi4+1) = O((1 + 1/mp41) lgn)
bits. This comes down to using the derivation for the (Start, Step, Stop) codes setting Step =
myy1 and Start = Z?:o m;.

We see that (Start, Step, Stop) and Start/Stop codes are strongly related, as both have

auniversality constant of 1+ 1/a, where a is the parameter controlling the universal portion of
the code.

5 Results

Let the reader consider table 1. In this table, we compare the best (Start, Step, Stop), Start/Stop
and Huffman codes for a series of distributions with non-increasing mass functions.

Huffman codes are tree-structured minimal redundancy codes [Huffman 52]. Codebooks
generated by Huffman’s algorithm always have average code lengths that are less than one bit
longer than what the entropy of the source would ask for. However, this algorithm requires
that a description of the code tree be sent to the decoder. In our case where if x < y then
P(X =z) > P(X = y) we can transmit only the shape of the tree. Would we be dealing with
a distribution that is not strictly non-increasing, we would have to send information about the
permutation of the integers that transforms this distribution into a non-increasing distribution.
Sending only the shape of the tree need O((Ig N)2) bits in the average case, but can degen-
erate in O(N). The number of bits needed to describe a (Start, Step, Stop) code is O(lg N)
since it suffices to encode Start and Step, which are both O(lg N) bits numbers. Describing a
Start/Step codes asks for O(IlgN +1gk;, .. +1g9(n, k},,.)) bits. The function g(n, k), eq.(5),
gives the number of possible combinations of M parameters that satisfy), m; = n. An efficient
code for g(n, k) can be obtained by Cover’s algorithm [Cover 73].

We see that Start/Stop codes, either optimized with the greedy algorithm or the combina-
torial search algorithm consistently beat (Start, Step, Stop) codes. Start/Stop codes also give
codes whose average lengths are within a few percent of those of the optimal Huffman codes. The
tables 2 and 3 give the paramaters obtained. The parameters for the (Start, Step, Stop) codes
are obtained by the exhaustive optimization algorithm presented in section 2. The parameters
for the Start/Stop codes are obtained by the combinatorial optimization algorithm of section
3.2. The greedy algorithm, altough not optimal, tends to approximate the Huffman code tree
and therefore generates often O(lg N) parameters. These O(lg N) parameters suffice entierely
to describe the code. When we use the combinatorial optimization algorithm with a chosen M,
these M parameters also suffice to describe unambiguously the code.

From table 2 one can see that (Start, Step, Stop) codes, while being moderately efficient,
tends to allow for more codes than required by the desired range. In the experiments, the range
was 0,...,2'% — 1. The parameters that minimized the average code length created ranges that
were twice as large as needed. This excess in range causes about a bit per code to be wasted.
Start/Stop codes, as can be seen from table 3, created very few excess codes.

6 Conclusion

We see that the (Start, Step, Stop) codes are not as efficient as the Start/Stop codes, a gen-
eralization introduced in this paper. (Start, Step, Stop) codes tend to give larger average code
length than Start/Stop codes and they also allocate a lot more codes that strictly needed. This
is caused by the rigidity of (Start, Step, Stop) codes, in that it constrains the code length to be
of the form min(k},,.,k + 1) + Start + k Step. This causes several very different distributions

to receive the same best parameters Start, Step, Stop. The Start/Stop codes are more flexible.
One can choose a set of parameters, {mg,m1,... ,my }, and the codes will have a length

function of the form min(k}, .,k + 1) + Ef:o m;j, which is much more flexible than the length
function of (Start, Step, Stop) codes. Start/Step codes can be optimized with or without lim-
iting the number of parameters, and give average code lengths that are within a few percent of
the equivalent Huffman codes. Special constraints can be applied to the optimization to allow
for fast coding and decoding.

Start/Stop
Law H(X) | Huffman | (Start, Step, Stop) | greedy | M =6
Zipf t 0.6670 | 1.2483 1.2704 1.2584 | 1.2675
Exp 1.4935 | 1.5766 1.8289 1.5766 | 1.6067
16 Exp 5.4346 | 5.4637 6.2738 5.5304 | 5.6028
32Exp1 6.4327 | 6.4618 6.8279 6.5282 | 6.6011
N(0,1)] 1.1080 | 1.3672 1.6420 1.3672 | 1.3672
N(0,10)| 4.3708 | 4.4028 5.6046 4.5229 | 4.5524
N (0,100)] 7.6894 | 7.7095 8.1513 7.7878 | 7.7968
Geometric, p = % 2.0000 | 2.0000 2.2593 2.0000 | 2.0854
Geometric, p— & | 3.2381 | 3.2765 | 3.6281 3.9820 | 3.3824
Geometric, p = 4= | 4.6824 | 47191 | 5.6969 4.8074 | 4.8048

Table 1: Comparison of the average code length for the (Start, Step, Stop), Start/Stop and
Huffman codes for some usual distributions. t Zipf’s law: P(Z = 2) ~ (2In(1.78N))"*. { 1z X ~
Exp, 3%X ~ Exp.

(Start, Step, Stop)

Law Parameters | Range

Ziptt 0, 1,16) 0 — 131070
Exp (0,1,16) | 0 131070
16 Expf (5,1,11) | 0— 131039
32 Expf (5,1,11) | 0 131039
N, 1)] (0,1,16) | 0— 131070
N(0,10)] (0,1,16) | 0— 131070
(0, 100)] (6,1,16) | 0— 131007
Geometric, p=1 | (0,1,16) 0 - 131070
Geometric, p=; [(0,1,16) 0 — 131070
Geometric, p= 3= | (0,1,16) 0 - 131070

Table 2: Parameters for the (Start,Step, Stop) code of table 1. Due to the rigidity of the
(Start, Step, Stop) codes, we end up allocating as much as twice as many codes as necessary.
Notice that different random laws received the same set of parameters, an effect also due to the
rigidity of the code structure. 1 See table 1.

Start/Stop with M =6

Law Parameters Range

Zipft 10,0,1,2,3,10} | 0— 65611
Exp {0,0,0,0,2,14} | 0 65543
16 Expt {4,0,0,0,2,10} | 0 65663
32 Bxpt {5,0,0,0,2,9} | 0— 65791
N0, 1) {0,0,0,0,0,16} | 0 65540
N(0,10)] {3,0,0,0,0,13} | 0 65575
N(0,100)] {6,0,0,0,1,9} | 0 65919
Geometric, p=% | {0,0,0,1,1,14} [0 — 65544
Geometric, p=3 | {1,0,1,0,2,12} | 0 — 65563
Geometric, p = 15 | {3,0,0,1,1,11} | 0 — 65607

Table 3: Parameters of Start/Stop codes with M = 6. 1 See table 1.

References

[Cover 73] T. M. Cover, Enumerative Source Coding, IEEE Trans. Inf. Theory, v19 #1, pp.
73-77, 1973

[Elias 75] P. Elias, Universal Codeword Sets and Representations of the Integers, IEEE Trans.
on Inform. Theory, IT-21 #2, pp. 194-203, March 1975

[Fiala 89] E.R. Fiala, D.H. Greene, Data compression with finite windows, CACM, v32 #4,
pp. 490-505, April 1989

[Huffman 52] D. Huffman, A Method for the construction of Minimum Redundancy Codes,
Procs. of the LR.E., v40 #9, pp. 1098-1101, 1952

10

