
EXPLOITING MOTION ESTIMATION RESILIENCE TO APPROXIMATED
METRICS ON SIMD-CAPABLE GENERAL PROCESSORS:

FROM ATOM TO NEHALEM

Steven Pigeon and Stéphane Coulombe

Department of Software and IT Engineering
École de Technologie Supérieure

1100 Notre-Dame Ouest, Montréal, Qc, H3C 1K3

ABSTRACT

In the past, efforts to speed up motion estimation for video
encoding were directed at finding better predictive search al-
gorithms. Now, they are directed toward the shrewd exploita-
tion of the machine’s advanced architectural features such as
multimedia extensions, especially for the computation of the
error metric which is known to be expensive. In this paper,
we extend previous work by further exploring efficient imple-
mentation of approximate fast metrics for motion estimation.
We show that the proposed metrics can be implemented using
SIMD instructions to yield impressive speed-ups, up to 12:1
relative to non-vectorized but otherwise optimized C code,
while sacrificing less than 0.1 dB on image quality.

Index Terms— video coding, SIMD, motion estimation, motion
compensation, error metric, approximate metric, compiler autovec-
torization, SSE, SSE2

1. INTRODUCTION

Modern video codecs, such as MPEG-4 and H.264, rely
on motion-compensated predictive coding as their principal
means of achieving high compression ratios through spatial
and temporal redundancy reduction. To perform motion com-
pensation, the motion within a scene must first be estimated
using a motion estimation algorithm. Despite increasingly
sophisticated algorithms, motion estimation remains quite
computationally expensive, accounting for a large portion of
the run-time in encoders—sometimes up to 60% [1, 2].
Motion estimation is an obvious target for speed opti-

mization. Over the years, numerous methods have been de-
vised to accelerate the process. The focus has shifted pro-
gressively from efficient search algorithms to predictive al-
gorithms where a number of probable locations for the best
matching block are generated. Predictive motion estimation
combined with efficient search methods yields the best re-
sults, in both speed and quality. Alas, despite the algorithmic
speed-ups offered by the most efficient algorithms, motion es-
timation remains a very expensive step in video coding.

This work was funded by Vantrix Corporation and by the Natural Sci-
ences and Engineering Research Council of Canada under the Collaborative
Research and Development Program (NSERC-CRD 326637-05). E-mails:
{steven.pigeon,stephane.coulombe}@etsmtl.ca)

While considerable effort has been made to develop fast
and accurate motion estimation algorithms, the metrics used
to estimate the goodness of match in such algorithms have
been studied comparatively little, even less so in combina-
tion with efficient motion estimation algorithms. The metrics
available in most codecs are limited to the mean squared error
(MSE) and the sum of absolute differences (SAD), with the
latter usually favored, as it is deemed to be less expensive to
compute than the MSE [3], a hypothesis verified only if the
target computer sports efficient absolute value instructions.
Both are usually computed with high precision—at greater
cost—even though it is known that motion estimation algo-
rithms are quite resilient to various types of errors in the esti-
mation of the metric [4, 5].

Exploiting this resilience naturally leads to approximated,
truncated, or even randomized algorithms for the evaluation
of the metric, the goal being to balance the precision of the
result with the cost of computation. Such algorithms have
already been proposed but without any real regard to the
implementation-specific impacts on the performance of the
underlying machine [6–9]. The proposed solutions often re-
sult in highly branching code, or code that is difficult to paral-
lelize, mitigates or even nullifies speed-ups, as they interfere
with, amongst other things, the processor’s branch predic-
tion unit, thus yielding interesting but ultimately suboptimal
results. Truly efficient implementations of approximated met-
rics must consider implementation-specific techniques, rely-
ing on the astute exploitation of the underlying machine’s
architecture and instruction set (known collectively as the
ISA). In modern processors, this means that full advantage
must be taken of any machine-specific ISA extension, and,
in particular, multimedia and single instruction, multiple data
(SIMD) extensions.

In this paper, we extend previously presented work [4]
by exploring the pragmatics of the implementation of fast
approximated metrics and present new results. We show
that taking full advantage of the ISA leads to impressive
performance gains on a variety of processors, while loss
associated with the use of suitable approximated metrics
remains negligible.

978-1-4244-5710-6/10/$26.00 ©2010 IEEE 18

25th Biennial Symposium on Communications

2. RESILIENCE AND APPROXIMATE METRICS

In [4], we proposed generalizing the SAD computed between
two 16× 16 image patches I and J as:

SADM (I� J) =

�6�

x=�

�6�

y=�

Mx�y

�
�Ix�y − Jx�y

�
� (1)

where M is a 16 × 16 binary matrix conditionally enabling
comparison between pixels.
The matrixM allows us to define arbitrary masks for the

SAD. Masks can be designed based on a number of criteria,
maximizing sampling efficiency for a given number of pixels
tested, for example. Another criterion of great interest is
maximizing evaluation speed by exploiting themachine’s ISA
under the constraint of minimizing loss of quality. In Fig. 1
we show the masks considered in this paper, as well as in [4].
Of particular interest are the masks shown in Fig. 1 (c), (d),
and (e). The most important feature of these masks is that
they can be implemented using efficient machine instructions
to compute the SAD between two rows of eight or sixteen
pixels; instructions that are readily available on most SIMD-
capable general processors.
In previous work, in order to demonstrate that motion es-

timation algorithms are resilient to approximated metrics, we
performedmotion compensation on a series of standard QCIF
and CIF video sequences, such as Akyio, Bus, Foreman, etc.,
using motion estimation algorithms such as EPZS [3], PMV-
FAST [10], UMHexS [11], and Full Search, and measured
the resulting compensated image quality in PSNR, without
any further quantization. Figures 2 and 3 show the compen-
sated image quality for the various approximate SAD algo-
rithms for Full Search and UMHexS. Tables 1, 2 and 3 sum-
marize the loss incurred by the approximate metrics on the
standard CIF sequences using the Full Search, EPZS, and
UMHexS motion estimation algorithms. More results can be
found in [4].
What the results indicate is that the use of the proposed

approximatemetrics incur small losses, and that the resilience
of motion estimation algorithms is confirmed. Even the most
important losses associated with the interlaced and the sparse
masks are shown to be less than 1dB before quantization,
while the loss associated with Subsampled Deintinterlaced
and Deinterlaced masks is at most 0.1dB. The use of the
proposed approximated metrics is therefore shown to be a
perfectly valid strategy for complexity reduction in motion
estimation algorithms.

3. IMPLEMENTATION DETAILS

A machine-specific implementation must rely on the shrewd
exploitation of the underlying machine’s ISA. However, mod-
ern CPUs exhibit complex behavior in the interaction between
the algorithms, the instruction set, and the underlying archi-
tecture implementation and, consequently, a naïve approach
to implementation will often lead to unsatisfactory results.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Approximate metrics. (a) Sparse; (b) Quincunx; (c) Sub-
sampled deinterlaced; (d) Deinterlaced; (e) Interlaced; (f) Full SAD.
Shaded squares represent non zero elements in matrix� .

Fig. 2. PSNR resulting from the use of approximate metrics for the
Foreman CIF sequence using Full Search. Frames 90–110 shown.

CPUs from a same family sporting compatible instruction
sets may have very different hardware implementations and
display very different performance characteristics. If the im-

Fig. 3. PSNR resulting from the use of approximate metrics for the
Foreman CIF sequence using UMHexS. Frames 90–110 shown.

19

25th Biennial Symposium on Communications

CIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 42.8 -0.02 -0.05 -0.07 -0.05 -0.11
Bus 25.1 -0.01 -0.06 -0.10 -0.13 -0.34

Foreman 32.2 -0.03 -0.10 -0.11 -0.76 -0.86
News 36.5 -0.03 -0.06 -0.09 -0.10 -0.23
Mobile 25.2 -0.04 -0.07 -0.08 -0.09 -0.26
Stefan 26.0 -0.01 -0.08 -0.10 -0.12 -0.25
Tempete 27.0 -0.01 -0.04 -0.06 -0.05 -0.12

Table 1. PSNR (dB) for selected CIF sequences using Full Search.
SAD, Quin., Deint, S-Deint, and Int. stand for the full SAD, the
quincunx, the Deinterlaced, Sampled Deinterlaced and Interlaced
patterns, respectively.

CIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 42.7 -0.02 -0.05 -0.07 -0.06 -0.11
Bus 24.3 -0.00 -0.05 -0.05 -0.17 -0.34

Foreman 31.9 -0.04 -0.11 -0.11 -0.73 -0.83
News 36.2 -0.03 -0.08 -0.12 -0.08 -0.24
Mobile 25.1 -0.03 -0.05 -0.06 -0.07 -0.23
Stefan 25.7 -0.01 -0.09 -0.09 -0.11 -0.22
Tempete 26.5 -0.02 -0.05 -0.07 -0.06 -0.13

Table 2. PSNR (dB) for selected CIF sequences using EPZS. See
Table 1 for legend.

plementation of a given codec targets a particular CPU, the
CPU’s particular features can be exploited very effectively,
but, in general, the implementation effort vs. resulting perfor-
mance trade off will dictate that the implementation targets a
CPU family, possibly of the same performance class, rather
than a specific CPU. But, to optimize the implementation for
a CPU family, one has several aspects to consider, which are
discussed below.

Minimizing needed memory bandwidth and read latency
is one such aspect. Bringing data into registers from memory,
even when residing in cache, will incur a delay proportional
to the width of the data read. To minimize read-related
delays, the number of times the memory is accessed can be
reduced by using alternative algorithms such as we propose
here. The impact on the memory hierarchy can be further
reduced by using non-temporal reads, hinting the memory
controller to optimize cache usage. While we must ultimately
give up on aligned-only memory access, alignment remains
a concern. We can minimize alignment-related latency by
carefully choosing the width of the data read from memory,
given the target architecture. For example, on a system with a
32-bit memory bus, reading 64 bits will result in three reads

CIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 42.7 -0.02 -0.06 -0.07 -0.06 -0.12
Bus 24.6 -0.02 -0.06 -0.11 -0.17 -0.42

Foreman 31.9 -0.03 -0.11 -0.11 -0.74 -0.83
News 36.3 -0.04 -0.04 -0.07 -0.09 -0.24
Mobile 25.2 -0.04 -0.07 -0.09 -0.09 -0.33
Stefan 25.9 -0.01 -0.08 -0.10 -0.14 -0.24
Tempete 26.8 -0.02 -0.05 -0.07 -0.06 -0.15

Table 3. PSNR (dB) for selected CIF sequences using UMHexS.
See Table 1 for legend.

3/4 of the time. On a system with a 128-bit memory bus, the
same 64 bits reads result in two reads only 7/�6 of the time,
yielding better performance, even at same system speed.

CISC CPUs achieve high performance by breaking down
complex instructions into micro-instructions, which are sched-
uled for super-scalar out-of-order execution [12]. To maxi-
mize throughput, instruction complexity and dependencies
must be kept to a minimum. Addressing mode complexity,
in particular, can be significantly reduced using compile time
constant folding. While arbitrary image resolutions must be
expected for still image processing, for video coding we can
suppose that one of the few conventional formats—QCIF,
CIF, VGA, SD, etc.—is used, so it is quite conceivable to
specialize the most computationally intensive functions for
these resolutions. In this case, specialization is achieved by
precomputing relative displacements within the image buffer
and propagating the constants as immediate values in the
instructions themselves at compile time.

Data dependencies can also be reduced or eliminated. In
the case of the computation of the metric, the dependencies
are mostly read dependencies, as the pixels are read from
memory without write-back, and the write dependencies are
limited to the computation of the sum. Due to the additive
nature of the metrics considered, the computation can be
broken down into n independent sums (thereby reducing
write dependencies by using separate registers), which can be
later combined in at most O(lg n) to obtain the final value.

A modern processor minimizes the impact of conditional
jumps by predicting whether or not jumps will be taken. The
processor prepares for the most likely outcome—as deter-
mined by its branch prediction algorithm—by prefetching the
instructions at the predicted jump location and starting to ex-
ecute them. If the branch is taken as predicted, the execu-
tion flows into the prefetched (and possibly already execut-
ing) code. If the jump is mispredicted, however, severe per-
formance penalty may be incurred. Not only does the pro-
cessor need to fetch instructions at the alternate jump loca-
tion, it may also have to discard code already executing with
a penalty proportional to its pipelines’ depths. Mispredicted
jumps must be avoided and the surest way of achieving this
is to unroll loops, which eliminates conditional jumps alto-
gether. While we now face a code size vs. speed trade off,
unrolling loops with a relatively small number of iterations is
generally beneficial to execution speed.

High-level language features, like the calling conven-
tion, play a role in implementation-specific performance.
The calling convention determines how arguments are passed
and how functions are called. Favoring a faster calling con-
vention whenever possible will lead to better performance.
For example, the default calling convention on 32-bit mode
x86 processors consists of pushing the function’s arguments
onto the stack before the call is performed. On 64-bit mode
x86_64 processors, the calling convention uses the more ef-
ficient passing by register strategy. Skipping the construction
of the local stack frame will also yield—although in this case

20

25th Biennial Symposium on Communications

modest—performance improvements. Call convention and
stack frame building can be modified using compiler-specific
language extensions.
Most, but not all, optimization aspects we discussed can

be addressed through standard C (or C++) language program-
ming and compiler extensions. A certain degree of control
over parallelism, call conventions, and instruction generation
is afforded through library and compiler-specific extensions
such as “pragmas”. While an optimizing compiler will use
its knowledge about the target processor and sophisticated
heuristics to detect vectorization and generate code using
SIMD instructions, it will ultimately prove difficult to control
for obtaining results that are always satisfactory, as we will
show.
The solution is to write a small set of critical routines for

the target processor(s), like the SAD, in assembly language
directly. Because the programmer has total control over the
instructions executed by the processor, it is possible to fine-
tune the implementation until performance expectations are
met, a result that would otherwise be impossible to attain
using only high level C code and relying on the compiler and
its various extensions for auto-vectorization and aggressive
optimizations.
We implemented the proposed approximate metrics (the

sparse, quincunx, subsampled deinterlaced, deinterlaced, and
interlaced metrics), as well as the full SAD, as shown in
Fig. 1, using three techniques. The first is an implementa-
tion in C++ language using non-vectorized but otherwise
optimized compilation with ICC and G++. The second uses
the same compilers but with vectorization and aggressive
optimizations enabled. The third consists of an assembly
language implementation using SSE2-level instructions and
omitted stack frames. The assembly language implementa-
tions address the concerns discussed in this section for best
performance. All implementations were ported to both x86
and x86_64 CPUs using the most adequate calling conven-
tions.
The choice of a CPU to conduct a representative perfor-

mance test is an arduous one. Rather than targeting a spe-
cific CPU or assuming a particular application (for exam-
ple, high-end server for bulk coding or transcoding), we com-
pared the speed-ups obtained on a number of readily available
CPUs, covering the performance spectrum as widely as pos-
sible, ranging from the Intel Atom N270 to the Xeon E5530
(using the i7 architecture, codenamed Nehalem), including
other CPUs such as the Intel Mobile Pentium 4 and the AMD
3500+. The full list is found in Table 4.
Tests were conducted on the GNU/Linux operating sys-

tem, specifically the Ubuntu distribution, version 8.04 LTS,
using the GNU C++ compiler (g++) v4.2 and the Intel C
Compiler v11.0. We used the function computing the SAD
(ippiSAD16x16_8u32s with option IPPVC_MC_APX_FF)
from the Intel Performance Primitives Libraries v6.0 as a use-
ful benchmark. Timings were obtained using an OS-specific
timing function (gettimeofday) and are accurate to �2�.
We present the performance results obtained in section 4 and

Processor Family Clock (GHz) Mode

Intel E5530 i7 2.40 x86_64

Intel N270 Atom 1.60 x86

Intel 6700 Core 2 2.66 x86

Intel 6400 Core 2 2.13 x86_64

Intel T2500 Core 2.00 x86

Intel 5130 Core 2 2.00 x86_64

Intel P8700 Core 2 2.53 x86_64

Intel Mobile P4 P4 3.06 x86

AMD 3500+ Athlon 2.21 x86_64

Table 4. Processors considered in our study.

discuss them in section 5.

4. RESULTS

Fig. 4 and Table 5 summarize the results for all the processors
available to our study. The absolute performances of the im-
plementation of the approximated metrics, given the proces-
sors, vary greatly, but a more careful examination of Fig. 4 re-
veals that the relative performance of the efficient implemen-
tation of approximate metrics remains about the same from
one processor to another.
Figs. 5 and 6 present the relative performance of our pro-

posed metrics implemented in SSE2-level assembly language
versus what is gained through autovectorization and optimiz-
ing compilers. Again, the IPP implementation is used as the
benchmark. Finally, Fig. 7 compares the Intel E5530 proces-
sor (i7 architecture) against the Intel N270 (Atom) on the
same scale. The performance of the E5530 dwarfs that of the
N270, but again we observe that the relative performances
of methods (SAD vs. Sparse, for example) remains similar
across processors.

5. DISCUSSION

Unless special quality requirements are set for coding or
transcoding, the loss incurred by the use of the proposed
metrics is quite acceptable, as we have shown in previous
work [4]. While the approximate metrics using the interlaced
and sparse masks are the fastest methods, their potentially
significant losses, although always less than 1 dB, makes
them comparatively uninteresting as the S-Deint method,
which is only slightly slower, incurs losses of at most 0.1 dB.
From the various tables and figures, we can gather than

the auto-vectorizing compiler does not always recognize the
potential for vectorization from the C code, even though
it was carefully crafted to help the compiler detect auto-
vectorization. In Fig. 6, we see that both compilers fail to
produce auto-vectorized code that comes even close to the
proposed or IPP implementations. These results indicate that,
in fact, the compilers either failed to recognize the poten-
tial for vectorization (for G++ 4.2) or failed to recognize
the machine’s full capabilities (for ICC 11.0) to generate
efficient code. Examining Table 5, we see that on other ma-
chines, where vectorization succeeded the auto-vectorization

21

25th Biennial Symposium on Communications

Number of calls per μs

Processors GHz C++ C++* SAD Sparse Quin. S-Deint Deint Int IPP

Intel Xeon E5530 2.40 2.32 3.30 18.82 39.47 18.26 34.41 26.15 42.26 16.16

Intel Atom N270 1.60 0.75 0.75 1.82 3.12 1.71 2.94 2.59 3.07 1.56

Intel Core 2 6700 2.66 2.38 3.36 7.89 14.46 7.71 13.40 11.14 14.83 6.89

Intel Core 2 6400 2.13 1.95 2.73 6.15 10.97 6.05 10.38 8.60 11.00 5.83

Intel Core T2500 2.00 1.31 1.77 6.00 10.44 5.89 10.05 8.43 10.64 5.42

Intel Xeon 5130 2.00 2.55 2.55 5.79 10.70 5.77 10.90 8.82 10.90 4.97

Intel Centrino P8700 2.53 2.32 3.27 7.70 14.22 7.68 12.75 10.71 14.10 7.47

Mobile Pentium 4 3.06 1.58 1.58 8.21 12.70 7.28 13.95 12.09 14.07 7.05

AMD Athlon 3500+ 2.21 1.32 1.32 3.99 7.35 3.95 6.09 5.55 7.59 3.43

Table 5. Performance results for all tested processors on CIF images, in metric computation per μs. C++ are results from the full SAD
without vectorization, using G++ 4.2.x. C++* results are from the full SAD using G++ 4.2.x with vectorization. Other methods are SSE2
optimized. Results in italics because IPP was not available on the machine tested.

� �� �� �� �� ��

������������

����������������

����������������

��������������������

���������������

����������������

�����������������

�����������������

���������������

����������������

�����������������������������

������������

��������������������

���
������
��������
�������
�����
������
���

Fig. 4. Performance of SSE2-level implementations on all the
machine considered, in calls by μs (more is better). IPP denotes
Intel’s Implementation of the full S�D.

yielded modest speed-ups, not even 2:1, while the care-
fully crafted SSE2-level assembly language implementations
yielded speed-ups ranging from 6:1 to over 12:1 relative to
auto-vectorized C code, depending on the sparseness of the
approximated metric considered. Fig. 6 compares the auto-
vectorization results from G++ with ICC. ICC bests G++ in
most cases, but not by very much. The experiments therefore
show that our remark that it will ultimately prove difficult
to coax the compiler into generating efficient code is well
founded.

The figures show that the constant-propagated full SAD
implementation beats the IPP v6.0 implementation by≈ 15�.
The generic nature of IPP precludes the use of full constant
propagation and instruction simplification, resulting in perfor-

� ��� � ��� � ��� � ���

������������

���

������

��������

�������

�����

���

�����������������������������

���������

����
��������������������
���

Fig. 5. Performance of autovectorization vs. proposed implementa-
tions for the Atom N270, in calls by μs (more is better).

� �� �� �� �� ��

������������

���

������

��������

�������

�����

���

�����������������������������

�������������

����
��������������������������
�������������������������
���

Fig. 6. Performance of autovectorization vs. proposed implementa-
tions for the Xeon E5530, in calls by μs (more is better).

22

25th Biennial Symposium on Communications

� �� �� �� �� ��

������������

��
��
��
�
��
�
��
�
�
�

��
��
��
�
�
�
�
��
�
�
�
�

��������������������

������������������

���
������
��������
�������
�����
������
���
���������
��������

Fig. 7. Performance of implementations for the Xeon E5530 vs. the
Atom N270, to scale, in calls by μs. Results from G++ 4.2 and ICC
11.0 correspond to non-vectorized optimized C++ code for the full
S�D. Other methods are SSE2 optimized.

mance pessimization. While a gain of ≈ 15� is interesting,
the speed-ups obtained by using the proposed approximate
metrics are even more so, as they reach as much as 2.6:1
relative to IPP’s full SAD implementation, while leading to a
negligible loss in quality, as shown in Tables 1–3.

While each of the CPU tested sports conspicuously differ-
ent characteristics—architecture, power consumption, etc.—
the results indicate that in all cases there is a performance
gain to be had by using SSE2-level implementations of ap-
proximatedmetrics, and that the relative speed-ups are similar
regardless of architecture. While exact magnitudes vary from
processor to processor, the SSE2 implementation of the full
SAD beats the IPP implementation by the same 10 to 15%,
and the Interlaced, Sparse, and Subsampled Deinterlaced ap-
proximated metrics remain much faster than the other ap-
proximated metrics. These results indicate that we can afford
considerable code specialization before seeing any machine-
specific impact on performance, as the performance charac-
teristics remain similar across a wide range of processors of
different generations, families, and even makers.

We have shown that using the machine ISA to its full ex-
tent allows access to speed-ups that are impossible to obtain
with C++ compiled with optimizations and auto-vectorization
enabled. One reason for this is that the compilers are not al-
ways able to exploit the SIMD potential of C++ code.We also
have shown that, if we are willing to sacrifice motion estima-
tion precision by using approximatemetrics, there are impres-
sive speed-ups available. However, since we will also want to
minimize the maximum average error, approximated metrics
such as the Interlaced and Sparse approximated metrics are to
be avoided. The Subsampled Deinterlaced and Deinterlaced
metrics simultaneously afford large speed-ups and very small
quality loss—less than about 0.1 dB.

6. CONCLUSIONS

In this paper, we have shown that the proposed implemen-
tations yield consistent speed-ups across many processors of
different generations, families, and evenmakers.We have also
shown that the use of approximatemetrics and SSE2-level im-
plementations addressing many architectural concerns yield
speed-ups of as much as 12:1 relative to non-vectorized C
code depending on the best approximated metrics considered.
Future work will include characterization of speed-ups using
approximatedmetrics in codecs such as MPEG-4 andMPEG-
4 AVC/H.264.

7. REFERENCES

[1] P. M. Kuhn, G. Diebel, S. Hermann, A. Keil, H. Mooshofer,
A. Kaup, R. Mayer, and W. Stechele, “Complexity and
PSNR comparison of several motion estimation algorithms for
MPEG-4,” Procs. SPIE, pp. 486–489, 1998.

[2] Y.-L. Lai, Y.-Y. Tseng, C.-W. Lin, Z. Zhou, and M.-T. Sun,
“H.264 encoder speed-up via joint algorithm/code-level opti-
mization,” Procs. SPIE VCIP, July 2005.

[3] A. M. Tourapis, “Enhanced predictive zonal search for single
and multiple frame motion estimation,” in Visual Communica-
tions and Image Processing, Jan. 2002, pp. 1069–1079.

[4] S. Pigeon and S. Coulombe, “Speeding up motion estimation in
modern video encoders using approximate metrics and SIMD
processors,” IEEE Symposium on Industrial Electronics and
Applications (ISIEA), pp. 233–238, Oct. 2009.

[5] H.-Y. Cheong, I. S. Cheng, and A. Ortega, “Computation error
tolerance in motion estimation algorithms,” Int. Conference on
Image Processing (ICIP), pp. 3289–3292, Oct. 2006.

[6] F. Tombari and S. Mattoccia, “Template matching based
on the l� norm using sufficient conditions with incremental
approximations,” in Procs. IEEE int. Conf. on Advanced Video
and Signal-Based Surveillance, Nov. 2006, pp. 20–26.

[7] B. Liu and A. Zaccarin, “New fast algorithms for the esti-
mation of block motion vectors,” IEEE Trans. Circuits and
Systems For Video Technology, vol. 3, no. 2, pp. 148–157, Apr.
1993.

[8] C.-K. Cheung and L. m. Po, “A hierarchical block motion
estimation algorithm using partial distortion measures,” Int.
Conference on Image Processing (ICIP), vol. 3, pp. 606–609,
1997.

[9] Y.-L. Chan and W.-C. Siu, “New adaptive pixel decimation
for block motion vector estimation,” IEEE Trans. Circuits and
Systems For Video Technology, vol. 6, no. 1, pp. 113–118, Jan.
1996.

[10] A. M. Tourapis, O. C. Au, and M. Liou, “Predictive motion
vector field adaptive search technique (PMVFAST) - enhanc-
ing block based motion estimation,” in Int. Conference on Im-
age Processing (ICIP), Jan. 2001.

[11] Z. Chen, P. Zhou, and Y. He, “Fast integer and fractional pel
motion estimation for JVT,” Tech. Rep. JVT-F017, Dec. 2002.

[12] J. Hennessy and D. Patterson, Computer Architecture: A
quantitative Approach, Morgan Kauffman, 4th edition, 2006.

23

25th Biennial Symposium on Communications

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

