
Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Contents
Non Privileged User Package Management:

Use Cases, Issues, Proposed Solutions 19
François-Denis Gonthier & Steven Pigeon

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Non Privileged User Package Management:
Use Cases, Issues, Proposed Solutions

François-Denis Gonthier
Kryptiva, Inc.

fdgonthier@kryptiva.com

Steven Pigeon
École de Technologie Supérieure

Département de Génie Logiciel et
des Technologies de l’Information

spigeon@etsmtl.ca

Abstract

The package manager and the associated repositories
play a central role in the usability and stability of user
environments in GNU/Linux distributions. However,
the current package management paradigm puts the con-
trol of the system exclusively in the hands of the system
administrator, a root-like user. The non privileged user
must rely on the administrator to install the packages
he needs, while having to deal with delays or even re-
fusal. We think that non privileged package manage-
ment is the solution to the users’ woes. We show that
not only non privileged package management has real-
istic use cases, but also that it is quite feasible. We ex-
amine several possible existing solutions and show how
they cannot be satisfactory for the deployment of un-
privileged user package management. Finally, we anal-
yse the dpkg package manager and show how it can be
extended to include safe, consistent, non privileged user
package management. Amongst results, we present the
conflict resolution rules to include multiple databases, to
ensure system consistence and proper dependency man-
agement. We also present how to modify user environ-
ment initialization to include alternate install locations.
We show, finally, the feasibility and usefulness of un-
privileged user package management and how small the
changes to be made to a package manager such as dpkg
are.

1 Introduction

Non privileged user package management is not consid-
ered as an important use case in package management.
Package management focuses mainly on security and
system stability, relying on a centralized model where
control lies in the hands of the administrator(s). This

model, essentially the only one used in Linux distribu-
tions, relies on the implicit assumption that users cannot
manage their environment in any meaningful way, ex-
cept for minor tweaks and configurations, and that deci-
sions regarding packages can only be taken by adminis-
trators. We argue that while this model has proved itself
effective, there is room for the users to manage their en-
vironments beyond mere tweaks.

The problem of non privileged user package manage-
ment does not present itself when the user is the owner
and administrator of the machine but poses itself clearly
when the user is but one of many users of shared work-
stations or of a multi-user server for which he does not
possess administrative privileges. In this case, the user
must ask the administrator for the packages he needs,
and his request may very likely be denied, either be-
cause the package is against the local policies, because
the package conflicts with other packages on the sys-
tem, because it would affect adversely the other users,
because it represents a security risk, or even because the
administrator decides that the benefits to the user from
adding the requested packages are not worth the effort.
Whatever the reasons, the net result is that the user does
not get the needed packages and is left at his own de-
vices.

Being left at his own devices, the user will simply
resort to installing the needed software from tarballs,
downloaded from some location without authentication.
Launching the configure script, by specifying in-
stall location (usually through the --prefix switch),
building the software using the created Makefile, and
modifying his environment variables, he will eventually
succeed in locally installing the software.

The tarball approach suffers from a number of impor-
tant drawbacks, despite being the standard for develop-

• 19 •

20 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

ment builds. First, one must deal manually with the
missing dependencies of the software being compiled
and installed. As most software do not quite fail build-
ing but merely disable features when dependencies are
missing, it is every difficult for novice users—and even
more advanced ones—to configure software correctly.
Eventually, after fetching and building all needed de-
pendencies, the user manages to compile, install, and to
get the software to run correctly, but he still faces the
onus of making updates by himself, going through the
tarballing all over again at each new release.

It is our opinion that users should be able to locally in-
stall software through the much simpler process of using
the distribution-specific package manager, thus obtain-
ing all the benefits of centralized, trusted, and simple
to access distribution-specific repositories—as exist for
all major distributions—that provide packages with all
their dependencies. In addition to the simplified instal-
lation process, the user should get updates automatically
through the distribution’s update manager, without so
much intervention as a simple confirmation.

However, non privileged user package management is
seemingly a complex problem, and one can oppose it
several objections (that we discuss in Section 2.2) of
which security is the most obvious and the most serious.
Indeed, one cannot grant any user the right to install any
package as it may affect adversely other users or even
render the system inoperable. Delegating package man-
agement via a simple mechanism like the sudoers list
both is dangerous and insufficient.

The correct solution is therefore, in our opinion, to use
fully relocatable packages and to allow non privileged
users to perform private installs in their home directories
(or some other accessible location) through the pack-
age manager. This implies that there is a local pack-
age database for each user, and that the package man-
ager must maintain coherence between the user’s and
the system’s databases, being fully capable of detecting
and resolving package conflicts.

In this paper, we study the problem of non privileged
user package management. We outline the problem, as
we see it, and present venues for solutions. The paper
is organised as follows. Section 2 presents the proposed
use cases as well as possible objections to the proposed
model. Section 3 reviews the existing strategies to dele-
gate package management as well as existing package
managers, and discusses their shortcomings. In Sec-

tion 4 we outline our proposed solution using dpkg and
apt as example implementations. Finally, we conclude
in Section 5.

2 Non Privileged User Managed Packages

In this section, we propose use cases for non privileged
user package management and discuss possible objec-
tions to the extension of classical package management
to include non privileged user operations.

But before continuing, let us present the definitions of
the terms we will be using in the remainder of this text
and that should not be ambiguous to the reader.

The administrator is a special user with access to all of
the system’s files and programs. Amongst other things,
an administrator is a user that can manage packages on
a system. The administrator is a user with root privi-
leges. The user, on the other hand, is a user with no
administrative rights. His privileges are limited to his
personal files, programs made available to him, and he
cannot install packages on the system.

In a virtualization context, the host is the machine or
system that provides CPU and shared resources to one or
more guests operating systems. The host has complete
control over the guests it runs. A guest is a virtualized
instance of an operating system running on a host. The
guest can use the resources provided by the host, but in
isolation from the other guests.

The package manager is the software suite that takes
over the operations of installing, maintaining, or remov-
ing pre-compiled software packages in Linux distribu-
tions. Examples of packages managers are the Red Hat
Package Manager (RPM) and Debian’s dpkg. Selectable
pre-compiled software packages are stored in one or
many shared repositories.

A maintainer script is a script that is called during
package maintenance whether installation, upgrade or
removal. Maintainer scripts usually perform complex
tasks such as creating users and groups, generating or
removing application-specific configuration files, gen-
erate SSL or SSH keys, etc.

Repositories are storage locations containing a typically
large number of software packages, which can be re-
trieved by the package manager. Repositories contain
a certain amount of meta-data about the packages they
contain. Trusted repositories contain digitally signed
packages and are deemed safe (malware free).

2009 Linux Symposium • 21

2.1 Use Cases

The most difficult part, it seems, is to justify non priv-
ileged user package management as a valid and impor-
tant use case for Linux-based computer users. While it
may not seems a priori as an important use case, the
proliferation of shared Linux workstations at work, in
schools, and at home, warrants the question to be ex-
plored seriously. Indeed, how do we bring a superior
user experience, better customization, and higher us-
ability to users sharing computers, as in, for example,
a computer science class or similar environments while
minimizing the effort from the system’s administrators?

Non privileged user package management may be the
solutions to a number of administrative woes. Consider:

1. Reduced workload for administrators. Adminis-
trators would not be pressed to install user-requested
packages. The current installation process asks for
the administrator to personally intervene to install the
packages, but only after having investigated whether
or not the packages threaten the system in some way,
and after deciding whether the user’s benefit is worth
the effort of installation.

2. Reduced delays for users. Users in large machine
parks would not need to wait for their requests for
given packages to be processed and possibly denied
by the administrators. Users could install packages
in their environment right away, to no detriment to
other users.

3. User Empowerment. Users would gain direct con-
trol over their work environment without impeding
on the other users. Users would be able to con-
figure and streamline their environments for maxi-
mum usability and productivity, having all the appli-
cation they need, rather than subset of software pre-
established by the administrators.

What we advocate is, in essence, a shift away from the
current centralized, somewhat totalitarian, management
model to a distributed, delegated management model
where users can setup their own environments, subject
to the system’s policies, while minimizing impacts onto
other users.

As of today, adept users circumvent the impossibility
of installing their own packages through the package
manager by making local installs from tarballs. As al-
ready described, this is a tedious and error-prone pro-
cess. Additionally, packages installed from tarballs are

not recognized by the system’s package manager and
therefore are not automatically upgraded. Ideally, user-
installed package should provide the same facilities than
system packages, that is, minimizing installation effort,
reducing considerably the risk of setup and configura-
tion problems, while increasing maintainability through
periodic and automatic package upgrades.

2.2 Objections

Even though “user empowerment” is a nice idea, one
may object to non privileged user package management
by raising a number of objections. A possible list of
such objections could be as follows:

1. Delegation using sudoers. One could allow users
to access the package manager without really giv-
ing them root privileges by adding them and the spe-
cific command to the sudoers list. However, allow-
ing users to use the package manager to install global
packages is tantamount to giving them root access as
they are free to install whatever package they want,
including broken or malicious packages. Even well
intentioned, they can install software that affects ad-
versely the other users and they can make the sys-
tem inoperable as a whole. This would be prevented
by user-managed local installs, since unprivileged
users are granted permission to install packages from
a possibly limited set of packages (defined by ad-
ministrator policies) and only in their own user en-
vironments; and thus installed software runs with the
users’ privilege levels. Decisions on how to resolve
packages conflicts are made by the user—but never
to the detriment of the system. We will this discuss
this issue in detail in Section 4.5.

2. “Root” packages. Packages containing software
that must be run with privileges level higher than
a normal user, such as kernel modules, services
using protected resources like port numbers under
1024, etc., clearly cannot be left to user manage-
ment. Therefore, there must be configurable poli-
cies built into the package management system to
prevent users from installing such packages, and this
issue cannot be removed by non privileged user pack-
age management. However, critical packages can be
tagged in the repository as such and are therefore pre-
vented from being installed by a non privileged user.

3. Security of repositories. Trust management for
packages is a major issue. One cannot allow the

22 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

addition of arbitrary repositories, nor allow the in-
stallation of packages of unknown origin. Indeed,
if one allows user-managed packages, does it im-
ply that one also must allow user-managed reposi-
tories as well? If so, it means that the repositories
allowed must be trusted repositories (for example,
distribution-specific canonical repositories and their
trusted mirrors) to prevent users from adding poten-
tially harmful packages from arbitrary repositories.
A system-level policy must be used to allow or dis-
allow users from installing packages from unknown
repositories or from a local directory.

4. Redundancy and Disk Space. A given package
may be installed by more than one user, resulting
in multiple copies of the package’s files (including
configuration) that must be maintained. Moreover,
if the user can access his account from machines
with different architectures (via NIS and home di-
rectories over NFS, for example), the package may
be installed for each architecture, if available. Un-
less users lock the package version (for reasons their
own), these multiple copies should be updated cor-
rectly whenever system-wide updates are launched,
resulting in extra computational cost. This is mit-
igated by using group-level installs (which we will
discuss later on in Section 4.2) and by the fact that the
number of user-managed packages on a given system
is expected to remain relatively modest compared to
the total number of packages installed on the system.
Moreover, disk space quotas would sufficient to pre-
vent users from using an inordinate amount of disk
space, at the detriment of other users.

5. Users ignore policies. The administrator may want
to prevent users from installing software such as
games, BitTorrent software, etc. As simply inform-
ing the users of one’s wishes is not sufficient to pre-
vent them from installing forbidden software, the
policies must be enforced in the package manager
system itself. Policies define what is an acceptable
package (and its provenance), and where it can be
installed. We discuss policies in sect 4.6.

6. Users don’t know what they’re doing. While it
may be true that not every user is familiar with the in-
tricate details of package management, and that users
may not understand the impacts of installing a given
package, the package management system must pre-
vent them from causing damage to the system and
their own environments by applying its rules of con-
flict resolution.

7. Packages and Repositories must be modified. It is

true that a major reworking of repositories, packages,
and software they contain is needed to make user-
managed packaging systems possible. Every pack-
age has to be tagged with the specific set of privi-
leges required for its installation and use, but more
importantly, has to be made completely relocatable
so that user installs can be completed. Relocation
means that maintainer scripts and meta-data, other
than system-provided, must be rewritten in order to
accept arbitrary locations for the packages—it may
even imply change in the software itself so it can
adapt to new locations. It also implies that the user
environment setup scripts must be modified to ensure
that correct environment variables, paths and priori-
ties for packages are set.

8. Package Managers must be modified. The package
management software must be modified as well to
take into account the new meta-data found in repos-
itories and packages. More importantly, package
management software must be modified to manipu-
late multiple package databases and deal with pack-
age conflicts between the non privileged users in-
stalls and the system’s packages, ensuring consis-
tency of the system as a whole. In particular, conflict
resolution rules must be extended to include several
databases. Far from being impossible, we show that,
indeed, conflict resolution rules may be extended to
include several package databases.

Most of the preceding objections can be lifted, either
totally or at least greatly mitigated. For example, one
could use the potential explosion in needed disk space
as an argument against user-managed packages, but in
reality, this is not a problem given that there are other
facilities within the operating system to limit a user’s
disk space usage (which would already be in use in a
multi-user system), and that, for all intent, the cost of
the disk space itself is negligible.

The only serious objection to user-managed packages is
the amount of work needed to convert repositories and
modify package management software. What would be
an argument against the modification of packages is but
an argument about workload, not about the philosophy
of non privileged user package management itself. The
amount of work needed to modify the repositories for
added security and to allow truly relocatable package is
not small, but may not be as important as first thought.
We discuss the necessary changes to packages in Sec-
tion 4.4 and 4.7.

2009 Linux Symposium • 23

As for package management software, we show in this
paper that the changes are likely minimal and that con-
flict resolution rules may be extended to non privileged
user package management as well, as we will show in
Section 4.5.

3 Existing Solutions

While it is our opinion that no exact solution to our
problem already exists, in this section, we consider the
different solution venues. First, we discuss VServer, a
system-level virtualization kernel modification that al-
lows one to create distinct virtual copies of the kernel
on a single machine. We discuss PackageKit, a pack-
age management API and GUI. We then discuss widely
used package managers such RPM (Red Hat) and dpkg
(Debian). For each, we explain why they are not exactly
solutions to the problem we are interested in, as stated
in Section 2.

VServer is a modification to the Linux kernel to al-
low system-level virtualization, enabling the computer
to run several guest virtual instances of the same host
kernel. This means that one can setup several isolated
instances of the same Linux distribution, or even dif-
ferent distributions provided they use the same kernel.
Each instance can be used by different owners, each en-
joying root privileges but unable to influence other in-
stances. VServer is therefore used to share the same
hardware between users with different needs, as each
user can install his own customized environment.

Delegating system management using virtualization is
a too heavy-handed answer to our problem. Using
VServer, the host system’s administrator relinquish full
control to his users (the administrators of the guests)
as to what is installed in their instances. The admin-
istrator can still control which repositories the users can
use, but this means reducing the customizability of the
guest systems. Obviously, the VServer kernel extension
provides no solutions for redundancy, as each guest has
its own instances of files. However, redundancy can be
limited somehow by hard-linking files across guests, but
this also limits the freedom of the users to choose their
packages, while adding the possibility of conflicts. Re-
dundancy is also mitigated as, very often, but not al-
ways, VServer is used to create several server-type guest
environments, which are, almost by definition, much
lighter—in terms of the number of packages installed—
than desktop environments.

Since a VServer guest installation is a complete Linux
installation, it gives its guest administrators full con-
trol on which packages are installed in the guest system
(provided they are so allowed by the host administra-
tor). Inside the guest system, the problem of allowing
users to install packages is still complete. Users having
access to the guest system but that are not administra-
tor for that guest cannot install packages, and the guest
administrator cannot delegate this right to his users in
a way that does not raise the objections stated earlier.
The multiplication of guest installations may also mean
that the host administrator has an increased workload as
he must now provide not only for the host, but also for
the various guests’ environments and users. Since all
guests could potentially be very different distributions
(but sharing the same kernel) the lack of uniformization
in each environment clearly does not simplify the host’s
administrative work.

PackageKit’s primary goal is to standardize pack-
age management across distributions. PackageKit ab-
stracts the complexities of the various existing pack-
age managers by offering a consistent interface across
the various distributions that already use it. It is com-
posed of a privileged dæmon, packagekitd, several
distribution-specific back-ends and GUIs. The front-
ends communicate with the dæmon using the D-BUS
desktop integration protocol, which in turn, delegates
the actual package management to the distribution-
specific back-end. By design, PackageKit deals with
some of the objections we raised to the traditional pack-
age management strategy.

The use of a privileged dæmon means that users can be
granted or denied its use in a secure fashion using priv-
ileges set by the PackageKit administrators. However,
PackageKit is still limited by the inherent (in)capability
of the underlying package managers as it uses them as
back-ends to complete its tasks. Improper configuration
of PackageKit opens the door to the same kinds of prob-
lems encountered when using delegation through sudo-
ers. If we suppose that user requests can be filtered, the
filters become a critical element of the package manage-
ment system. Malicious—or simply unskilled—users
could otherwise install packages that results in system-
wide damage. Such policy filters are not implemented
in PackageKit as of now; however, due to PackageKit’s
design, there should be no major obstacle to adding this
feature [1, 2].

This being said, it is worthwhile to note that Pack-

24 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

ageKit’s design is not fundamentally incompatible with
non privileged package management, even though it cur-
rently offers no direct support for it. It would be indeed
possible to do so, since a contribution to PackageKit al-
lows the local install of specific audio/video codecs to a
user’s directory.

RPM, the Red Hat Package Manager—one of the two
major package managers along with Debian’s dpkg—
implements package relocation in two ways, although
the original intend was not to allow regular users to per-
form private installs [3]. The first type of relocation, us-
ing the --prefix switch, causes all of the package’s
contents to be installed in the specified directory, includ-
ing configurations files that would normally be installed
in locations such as /etc/. The --prefix option
provides support to the maintainer scripts through the
environment variable RPM_INSTALL_PREFIX which
contains the path to the alternate location. Maintainer
scripts can use the variable to detect relocation and use
the new install location.

The second method, path replacement, is a sim-
ple technique that allows to install a subset of
package’s files in alternate locations and uses the
--relocate switch to do so. For example, specifying
--relocate=/etc=$HOME/etc would cause the
package manager to substitute /etc for $HOME/etc
wherever it occurs and, accordingly, all files that would
have been installed under /etc/ are now occupying the
same relative location under the specified alternate loca-
tion. Used without care, the --relocate option can
lead to non-functional packages, as it offers no means to
signal relocation to maintainer scripts.

RPM allows for relocating the package database, either
by using the --dbpath switch, which specifies an ex-
plicit location, or by using the --root switch, which
specifies a new root directory under which the relative
location of files is preserved. However, relocating the
database may necessitate the use of --nodeps and
--noscripts, two switches bypassing important fea-
tures of the package manager. Using --nodeps will
cause the package manager to skip dependency checks
as the package manager will refuse to install pack-
ages that have missing dependencies, either because
they are not installed or because relocation prevents the
package manager from detecting them correctly. The
--noscripts may be necessary for non relocatable
packages as their post-install scripts are not using rela-
tive, relocatable, paths.

While this gives users the opportunity to install pack-
ages in their own directories and manage their own
databases without root privileges, the RPM approach
has a number of serious drawbacks. First, relocation
using path replacement may cause the installed soft-
ware to fail as it may not be able to find the files it
needs. Were the packages relocatable, they would be
able to look for the configuration files in the new lo-
cations rather than in the default locations; something
that is, as of now, provided neither by the RPM package
manager nor by the packages themselves. Second, relo-
cating a RPM package will likely cause it to be unmain-
tainable. RPM keeps track of packages that are installed,
and where, but if the maintainer scripts are not able to
manage relocation, fully automatic package updates will
not be possible, even with user package databases. Re-
location can also break dependencies when other pack-
ages depending on the relocated packages are installed
as the installed dependencies are detected, but default
locations still assumed. Third, and lastly, RPM is un-
able to maintain the consistency between the system’s
database and the user databases because it merely allows
relocation of the database; not multiple databases, thus
potentially causing the user packages to break whenever
system-side dependencies are modified. The user must,
each time, manually reconfigure his packages to adapt
for system-side changes, a time consuming and error-
prone process.

RPM offers enough options to allow non privileged
users to manage their own databases and packages, but
as we explained, packages cannot be maintained auto-
matically and may be installed in a non-functional state
that may require manual effort to reconfigure properly—
if possible at all. In addition, none of the user’s envi-
ronment variables will be updated correctly, requiring
further manual intervention.

Dpkg, Debian’s package manager simply does not al-
low non privileged users to maintain private databases.
Dpkg has no facilities to allow relocation, save for in-
stallation inside “chrooted” environments. Maintaining
a local database and relocated packages will cause dpkg
to use the chroot system call before launching main-
tainer scripts. However, chroot is a privileged com-
mand unavailable to normal users. Additionally, dpkg’s
maintainer scripts are often complex, and invariably as-
sume / as the path prefix.

While adding relocation capabilities to dpkg was dis-
cussed [4], there are no serious plans to implement the

2009 Linux Symposium • 25

feature, as deemed an unimportant border case [5].

So, in essence, neither PackageKit nor VServer can
be used to allow non privileged user managed pack-
age. PackageKit offers an abstraction to package man-
agement in order to standardize the package manage-
ment API, relying on distribution-specific package man-
agement software to perform the actual management.
PackageKit may be promising because it may allow the
addition of policies to package management, but still
lacks the possibility to relocate packages as it is fun-
damentally limited by the underlying package manager.
VServer, on the other hand, only serves to create a
nested version of the problem where the management
of guest installs is delegated to their respective adminis-
trators (which are themselves subordinated to the host’s
administrator) and where the users of each guest are as
normal users on a normal distribution, that is, unprivi-
leged and unable to manage their own packages.

The principal package managers’ limitation is that they
expect their databases to be in a unique preassigned lo-
cation and cannot deal with multiple, possibly conflict-
ing, databases. Therefore, to minimize risks for the sys-
tem, the databases are set to be accessed with root priv-
ileges only. Package managers may offer means to relo-
cate the database, but they are limited to a simple relo-
cation. If a user uses these features to create a database
within his home directory, he could, theoretically, man-
age his own packages. But we saw that doing so forfeits
most of the package manager’s advantages such as auto-
matic updates, conflict and dependency resolution, and
automatic configuration.

Parts of the problems with relocation and automatic
package configuration lie with the packages themselves;
as their install scripts are unable to provide for arbitrary
relocation of the files they contain, and even worse, not
all software is capable of being relocated. This means
that the users must perform the necessary configurations
by hand, if allowed by the software at all.

In the next sections, we outline what we think would
constitute a viable solution addressing all the objectives
(and possible objections) stated until now, in particular
package relocation, conflict and dependency resolution
using multiple databases.

4 Proposed Solution

The minimal changes made to a package manager to
accommodate unprivileged user package management

necessarily depends strongly on the package manager
one wants to modify. The first important modification
is to allow the package manager to use user-specific
databases in addition to the system database. The sec-
ond is how the packages themselves are modified to al-
low fully relocatable installs. The third important mod-
ification concerns the users’ run-time environment that
must be set up correctly so that the users’ packages are
correctly configured. All modifications must be mini-
mal, and, if possible, hidden to the user. Furthermore,
a good solution would also be compatible with the File
Hierarchy Standard (FHS) [6].

To outline our proposed solution, we will use dpkg as an
example, especially that dpkg does not currently allow
local installs at all. We will present how to extend dpkg
to include unprivileged user package management.

4.1 Package Databases

The package manager must be extended to account for
user-managed package databases. The user must be
able to create a database for himself without further
privileges than he already has. The creation of such
a database would be automatic whenever the user in-
vokes apt-get install or dpkg -i without root
privileges. The location of the user’s package database
would be hidden in a dot file, or even a file within a dot
directory. The database would maintain the list of pack-
ages installed by the user as well as their locations. Note
that now, default location takes quite a different mean-
ing. It can mean the usual FHS or a relocated file hierar-
chy relative to the user’s home directory, depending on
the privileges used during installation.

Without any special rights, the user could now (possibly
with the help of some desktop applet) perform automatic
and periodic updates of his installed packages. As pack-
ages are updated by either the user or by the system’s
administrators, dependencies conflicts must be resolved
in an intelligent fashion. We will discuss conflict reso-
lution at length in Section 4.5.

4.2 Managing Local Databases

The default user database location should be sufficient
in most cases, but it could be explicitly relocated. By
default, privileged user would use the system default
database, location, and install paths, which are relative

26 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

to /. For an unprivileged user, the hierarchy would be
relative to his $HOME. In addition to installed packages
and their location, the users’ databases must include a
list of package-provided setup scripts that allow each
package to configure its environment properly.

The package manager must now support at least a
few new commands which we will outline. Let those
new commands be accessed through the added program
dpkg-env. Note that in addition to dpkg-env, one
would modify dpkg itself (and any front-ends, such as
apt) and the necessary modifications will be made clear
in the following paragraphs.

Through dpkg-env, the administrators and users
will be able to perform local database management
and environment setup. The first important set of
commands would allow the addition, management,
and removal of local user (and group) databases.
For example, a user can invoke dpkg-env --new
without privileges to create his own local package
database. If it already exists, the command succeeds.
One could also invoke dpkg-env --new --user
username with sufficient privileges to create a lo-
cal database for user username (it would also be
automatically created for the user invoking non priv-
ileged package management for the first time). In-
voking dpkg-env --new --group groupname
with sufficient privileges would create a group-specific
database located in /var/lib/dpkg/groups/
or, if specified otherwise, in some other loca-
tion. The packages themselves would be installed in
/var/lib/dpkg/groups/$GROUP. The important
nuance with group installs is that all users that are mem-
ber of this group will inherit the group’s packages and
environment at the login. A corresponding --remove
command would destroy a database after launching de-
installation of all related packages, preventing unusable
packages as well as loss of disk space.

4.3 Configuring the environment

The next important command relates to the user’s en-
vironment setup. For example, dpkg-env --setup
would scan the system database, the groups’ databases
and finally the user database to set up correctly the
environment for every installed package. The system
database would provide only default location installa-
tion, so all packages in the system database can be

swiftly dealt with by using the default environment set-
tings (as it is currently done on Debian and related distri-
butions). For groups and users, the procedure is similar.
The database is scanned and the package-specific envi-
ronment setup scripts are called. If a package offers (or
needs) no such script, it inherits default group or user lo-
cation through $PATH and $LD_LIBRARY_PATH. If a
package does offer such a script, it is executed and the
changes made to the environment are propagated to the
session.

The problem with dpkg-env --setup is that it must
be called just after a user logs in and before he begins
his session, so that he can use all the available pack-
ages correctly, including packages such as window man-
agers or interface extensions, for example. Currently,
it can be done in three different ways: using PAM,
using shell-specific profile configuration files, or using
.xsession.

The Pluggable Authentication Module (PAM) is the
standard Linux user authentication mechanism. It in-
cludes modules that are capable of launching actions
when the user logs in, before shell or session scripts
are executed. However, there are currently no sim-
ple way of modifying the environment variables from
PAM. PAM uses the pam_env module that allows the
user to add variables to his environment through the
user’s .pam_environment file. However, the file
only contains a static list of environment variables and
their values, and as such, cannot be used to run the
package-specific scripts needed to configure the envi-
ronment properly. The possibility of calling scripts from
PAM might be an interesting addition to the session ini-
tialization process.

Using shell profile scripts is not universal. The scripts
are recognized and executed by Bourne compatible
shells (sh, bash, ksh, zsh, etc.) when they are invoked.
The .profile is ignored until a shell is launched, and
so is useless if the user logs in via a graphical interface
that does not invoke a shell. This can be solved by using
the system-wide X session configuration file. In both
cases, it merely suffice to append a call to dpkg-env
--setup to the files, and the program is run using the
user’s credentials with no need for special privileges.

4.4 Package-Specific Environment Setup Scripts

To support complete relocalisation, it is likely that the
package will need, in addition to a field that tags it as

2009 Linux Symposium • 27

relocatable or not, a script that prepares its environment
once installed so that it runs properly. If the package
requires nothing more than the default (relocated) loca-
tions, the script is not required, as dpkg-env would
already provide the correct values through $PATH and
other environment variables. The packages might, how-
ever, require a special setup.

While executable programs need little more than mod-
ifying $PATH to be available, it is not so with
all packages. Native libraries can be found with
$LD_LIBRARY_PATH setup so that the proper prece-
dences are respected. Manual packages can already
install manpages in alternate location, provided that
$MANPATH is set or --manpath specified. Desktop
elements, such as icons and menu items can be installed
and found through various environment variables that
hopefully complies with the Base Directory Specifica-
tion, already in use in major distributions [7, 8].

Configuration files are often expected to be found in
the /etc/ directory. Programs using absolute path to
the configuration files will need to be modified to ac-
cess them through environment variables and relative
paths. Dynamically updated data, such as logs, are usu-
ally found in /var/. Just as with configuration file,
should this directory be relocated, the packages must ac-
cess it through the environment set up by dpkg-env.
However, care must be taken to ensure that the relocated
directory grants write access only to users that are enti-
tled to use the package.

Finally, static data such as images, sound effects, etc, are
usually installed in /usr/share and do not require
much caring for. They can be relocated without harm
provided that the access rights are set up properly for
their intended users and that proper environment vari-
ables are set so that applications can find them.

4.5 Conflict Resolution

If both users and administrator install packages inde-
pendently, conflict is bound to happen sooner or later.
By conflict, we mean whenever the situation comes up
where the user’s environment is affected by a change in
the system’s environment or when the user installs con-
flicting packages. Rules must be applied to decide what
will be the course of actions should conflict arise. In the
next few paragraphs, we will present conflictual situa-
tions and how to resolve them, while ensuring the sys-
tem’s integrity as a whole, possibly to the inconvenience

of the user or group. The main conflict resolution rules
would be as follows:

1. If a package x is user-installed and subsequently
system-installed, the package manager should pro-
ceed to uninstall the package from the user’s pack-
ages while leaving his configuration files untouched.
Same would occurs if the same package x is updated
system-side and now meets the user’s version.

2. The package x is installed system-side, but a user has
a different version x ′ that depends on user-installed
package y. If x and y are incompatible, accept or deny
the removal of x ′ and y from the user’s packages and
system-side installation of x and y.

3. If a system-side package x is installed, and that x
is user-installed and is depended upon by a user-
installed package y, remove both x and y from the
user’s packages and install y server-side.

4. If a system-side package x is installed or upgraded
and the users has a package y that depends on a dif-
ferent version of package x, x ′, also user-installed,
and that y is incompatible with x, accept the removal
of x ′ and y from the user’s packages and proceed with
the system-side installation of x, or fail the install or
upgrade of x.

5. If a system-side package x is installed or upgraded
while the user has package x ′ depended upon by
user-side package y, and y is incompatible with x,
accept the removal of y from the user’s packages, or
fail the install or upgrade of x.

6. If a user-side package x is upgraded and an older
user-side package x ′ is installed, proceed with the in-
stall of x.

7. If a user-side package x is upgraded while depended
upon by user-side package y, but y (and newer ver-
sions of y) is incompatible with the new version of x,
confirm the upgrade of x and the removal of y, or fail
the upgrade of x.

8. If a user-side package x is upgraded while depended
upon user-side y, and the new version of x is incom-
patible with the current version of y but a newer ver-
sion of y that is compatible with the new version of x
exist, upgrade both packages after confirmation.

9. If a user tries to install a root package x his request is
denied and the package manager bails out.

In the previous rules, the same applies when ’user’ is
changed for ’group’.

Unsurprisingly, the rules are reminiscent of the rules
already existing in current package managers, except

28 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

that they are extended to include both system-side and
user/group-side packages. As with system-side only
package management, the administrator is proposed
choices and must accept or refuse changes to the pack-
ages based on information provided by the package
management engine. The difference is that now, the ad-
ministrator can decide to forgo upgrade of a package be-
cause it breaks a user-side install, and if he does break
user-side packages, he does so knowingly.

4.6 Policies

Currently, neither dpkg nor apt provide for policies. As
discussed earlier in Section 2.2, it may be wise to pre-
vent users from adding repositories and install certain
types of packages, regardless of their origin. Prevent-
ing users from adding repositories greatly reduces secu-
rity risks, as one cannot ascertain the trustworthiness of
these new repositories. The same applies when the user
tries to install a package from one of his directories.

If adding repositories is allowed, the data must be stored
in a configuration file in the user’s home directory, pre-
venting effects on the system as a whole. Adding a
repository asks for authentication, and this can be done
using a white/black list system, where trusted reposito-
ries are listed. Such lists would be distribution-specific.

Filtering by package type (either categories, sections or
tags), or even by repository, may help the administrators
to ensure efficient usage of facilities. Software likely
to disrupt work environment, such as games, BitTor-
rent software, resource-hungry applications, or software
with unwanted licenses, may be blocked by administra-
tor fiat. The granularity of the policies could be very
coarse (repository level), coarse (package class level, tag
sets), or even fine (a specific package with a specific ver-
sion).

This limited type of policy management can be imple-
mented by adding a separate module to offer the admin-
istrator the possibility of editing policies. Categories
would include policies for all unprivileged users, for
specific unprivileged users, for all groups, for specific
groups. The package manager would simply access the
policies database to determine whether or not a given
operation can proceed. We think that the modifications
to the package manager are minimal since it suffice to
verify if the operation can be performed by checking
against policies.

In Section 2.2, we also noted that the disk space us-
age problem can be mitigated (or even eliminated) by
the standard quota facilities, and so we believe that it is
unnecessary to modify the package manager to track a
user’s disk space usage. It would however need to test
if sufficient space is left to perform the desired opera-
tions.

4.7 Modifications to existing Package Management
Software

Let us pursue with dpkg as an example package man-
ager and present the modifications needed to make un-
privileged user package management possible.

The first step would be to modify the tools used to pro-
duce packages. In the case of debhelper (the main tool
used for the creation of packages for dpkg, which pro-
vides a set of scripts to handle various repetitive tasks),
for example, most of the modifications are contained
within the default behavior of environment setup scripts.
For the vast majority of packages, it will suffice for the
setup script to add the package’s file locations to $PATH
and $LD_LIBRARY_PATH through a helper script API
that provides sh-like functions to ensure correctness
and avoid multiplicities. One would then simply re-
build the package with the added setup script, provided
that the software contained in the package is relocation-
aware.

The dpkg command line needs to be extended to support
multiple database paths. By default, dpkg would be able
to locate the system and the invoking user databases.
How operations are performed would depend on the ac-
cess rights provided on invocation: root access would
affect the system database while unprivileged invocation
would affect the user’s database. Of course, it must be
possible to specify explicitly operation mode regardless
of current privilege level.

The most important internal change to dpkg will be to
include install location to the package name and version
to the database. Multiple versions of the same pack-
age can exist simultaneously in different locations and
dpkg must be able to manage them correctly and inde-
pendently.

Conflict resolution must obey the resolution rules pre-
sented in Section 4.5, with the effect that system-
side packages have higher priority than user or group-
installed packages, as the goal is to keep the system con-
sistent, even if it means breaking a user’s environment.

2009 Linux Symposium • 29

Therefore, to apply system-side conflict resolution rules
as stated, dpkg must access and read all databases. By
doing so, conflicts can be resolved, correct updates of
users environments can be performed, and ensure the
system is left in a stable configuration, even if it means
that some users may have some of their packages up-
graded or removed. Ideally, package removal due to
conflicts must be notified to users. To apply user-side
conflict resolution, only the system and the invoking
user’s database must be read and verified.

Maintainer scripts that allow correct package reloca-
tion can be instructed of the new location via an envi-
ronment variable or a direct argument; in either case
dpkg must be modified to provide the correct value to
the maintainer scripts for install, updates or removals.
The current version of dpkg uses the chroot() sys-
tem call before calling a maintainer script to provide it
with the correct relative location and while this feature
is useful by itself, it would be activated only through the
explicit use of the --root command line option.

Apt would need to behave correctly when called by a
non privileged user. This means it would access the call-
ing user’s database or bail out elegantly if this is not pos-
sible. This is needed to ensure that invoking apt-get
install functions correctly, installing packages in
the user’s environment. Apt must locate automatically
the relevant databases, searching into user-configured
or standard locations. User-configured locations could
reside in $HOME/.apt.conf, which would be read
each time apt is invoked. A personal source.list
must also be locally stored and checked by apt to allow
a user to maintain his personal repository list (while sub-
ject to system’s policies). This file should use the same
syntax as the global source.list file.

To test for a relocatable package, it suffice to add a
boolean field that indicates whether or not the pack-
age is relocatable, allowing apt to bail out gracefully
if a non-relocatable package is installed with insuffi-
cient privileges. Since in Debian-like repositories meta-
information about packages can be copied in the repos-
itory index, it would be easy to make apt warn the user
about the non-relocatable nature of a package even be-
fore downloading. This functionality must therefore be
included in GUI-based front-ends like Synaptic to help
users manage their packages.

Policies for repositories and packages available to the
user also have to be included at this level. There already

is a configuration file, /etc/apt/preferences,
that enables the system administrator to pin particu-
lar packages to inhibit changes. This configuration
file could be extended with similar syntax to include
information about the prioritization and exclusion of
repositories. For example, fields such as Rep and
Rep-Priority.

The package manager (and its front-ends) must also be
able to prevent the installation of a package with un-
trusted origins. A user should not be able to install a
package, should the administrators decide so, from a
non authenticated location such as one of his directory.
In most distributions, the repositories already contains
the quasi-totality of safe packages, so the need to use
untrusted packages is quite lowered—the only possible
exception would be development tarballs corresponding
to packages too recent to have made their way to the
trusted repository.

5 Conclusion

In this paper, we have presented the problem of non
privileged user package management. In Section 2 we
presented the proposed use cases and possible objec-
tions. The use case we stressed most is when the user
shares workstations in a work or school environment
and he does not have sufficient privileges to install pack-
ages he needs and therefore has to rely entirely on the
system’s administrators, which may lead to unaccept-
able delays or even plain refusal. We presented, in Sec-
tion 3, the existing solutions to the problems and why
they were not quite satisfactory. In particular, we dis-
cussed the current package manager and how they fail
at providing all the tools necessary to make non privi-
leged user package managing possible.

Finally, in Section 4 we outlined the various modifica-
tion to be brought to package managers to make non
privileged user package management possible, in par-
ticular conflict resolution rules and how dpkg, taken as
an example of package manager, should be modified to
accommodate our proposal. We discussed policies that
would be needed to ensure the system’s stability as a
whole. We also showed that setting up the user environ-
ments at login would be rather simple despite the lack
of standard initialisation procedure across Linux distri-
bution. Finally, we think that we made clear that not
only non privileged user package management would be
beneficent to users, it is also quite possible to implement

30 • Non Privileged User Package Management: Use Cases, Issues, Proposed Solutions

using relatively little effort compared to what one might
have thought initially. Having shown the feasibility of
non privileged user package management, the next log-
ical step is to proceed to implementation, which is the
object of future work.

References

[1] The PackageKit Package Management Front-End,
http://www.packagekit.org

[2] The PackageKit Source Repository, http:
//www.packagekit.org/pk-faq.html

[3] Edward C. Bailey, Taking the Red Hat Package
Manager to the Limit, Red Hat Inc, 2000. Chapter
15, http://rpm.org/max-rpm/
ch-rpm-reloc.html

[4] Kenneth Arnold, Relocatable Package
Development proposal, Dpkg’s Wiki post,
http://www.dpkg.org/dpkg/
RelocatablePackages

[5] Daniel Burrows, Re: Non-privileged user
package management, Gmane forum message,
http://permalink.gmane.org/gmane.
linux.debian.apt.devel/15021

[6] Rusty Russell, Daniel Quinlan, Christopher Yeoh
(eds), The File Hierarchy Standard, V2.3,
http://www.pathname.com/fhs/pub/
fhs-2.3.html

[7] Waldo Bastian, Francois Gouget, Alex Graveley,
George Lebl, Havoc Pennington, Heinrich
Wendel, Desktop Menu Specification, V1.0,
http://standards.freedesktop.org/
menu-spec/menu-spec-1.0.html

[8] Waldo Bastian, Base Directory Specification,
V0.6, http://standards.freedesktop.
org/basedir-spec/basedir-spec-0.
6.html

