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Abstract – Multimedia Messaging Services (MMS) al-
low messages composed of different media attach-
ments to be exchanged between heterogeneous devices. In
this work, we consider the special case of image-only mes-
sages, where the challenge is to adapt messages so that the re-
ceiving device constraints are satisfied while maxi-
mizing the user’s perceived quality of adapted mes-
sages. We propose an adaptation algorithm based on pre-
dictors for file size and quality resulting from transcod-
ing parameters that explicitly maximizes an objective func-
tion based on the structural similarity image quality in-
dex. We show that the proposed method is not only re-
silient to the imprecision of predictors, but also yields sig-
nificantly better quality at reduced computational complex-
ity compared to other methods proposed in prior art.

Keywords – MMS, image adaptation, JPEG, optimization,
predictor, dynamic programming, SSIM.

I. I NTRODUCTION

Multimedia Messaging Services (MMS), allowing users
to exchange messages composed of various media at-
tachments, an emerging billion dollars industry [1], re-
quire server-side adaptation to ensure interoperability be-
tween terminals of different capabilities [2]. Image inter-
operability issues in MMS are mostly due to image res-
olutions and file sizes exceeding the receiving terminal’s
capabilities, and not to encoding formats as the major-
ity of image traffic is composed of JPEG images.

One must adapt, in the most efficient manner, images
both in resolution and file size so that the message satisfies
the receiving terminal capabilities while maximizing the
perceived quality of the message as a whole. In MMS,
the terminal capabilities are characterized by standard
profiles [3] such as Image Basic, that limits message size
to 30kB and images to maximum resolutions of160×120
pixels, and Image Rich with a message size of 100kB and
images up to640×480, to name a few.

Different solutions have been proposed to adapt images
for MMS and other related problems in the wider context
of mobile browsing. For example, some solutions mini-
mize transcoding time while satisfying size constraints,
but without explicit considerations for quality [4]. Oth-
ers only apply fixed profiles for transcoding [5]. Still oth-
ers propose manipulating message structure and images in
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order to keep only regions of interest; an approach deemed
too complex for realtime MMS adaptation [6], [7].

However, efficiently and accurately estimating the size
of a JPEG file resulting from transcoding an image with
changes both in resolution and quality factor (a parameter
that controls the aggressiveness of compression, and for
which we retain the semantics of the IJG [8]) remains
a challenge. In previous work, we investigated the issue
and proposed predictors and systems for the task of
adapting a single image [9]–[11], while in this paper
we propose a novel solution using low-cost predictors
to optimize multiple image MMS messages explicitly for
user experience, subject to the device’s constraints. We
show that our solution is capable of finding the optimal
solution given a perfect predictor and is quite tolerant of
predictors with errors. We also compare our solution to
other proposed adaptation algorithms.

II. PROPOSEDSOLUTION

Measuring visual quality of degraded images is a
difficult task. PSNR have been used extensively in
literature but is ultimately a poor indicator of perceived
quality. The structural similarity index (SSIM), proposed
by Wang et al. is deemed a better indicator of image
quality [12]. The SSIM is constrained, without significant
loss of generality, to the interval[0, 1], with any negative
values mapped onto 0. This will allow us to use the
following objective function, chosen to balance quality
amongst images,

Q(M,T ) =
∏n

i=1
Q (mi, T (mi, ti)) , (1)

whereM = {m1,m2, . . . ,mn} is the message composed
of n imagesmi with resolutionsR(mi) = (wi, hi); T =
{t1, t2, . . . , tn} is a series of transcoding parameters
ti = (qi, zi) composed of a target quality factorqi and
resolution scaling0<zi61; T (mi, ti) the function that
transforms an original imagemi with the transcoding
parametersti, yielding an image with a new quality factor
qi and resolutionziR(mi) = (ziwi, zihi); and where
Q(mi, T (mi, ti)) is the quality metric (in our case SSIM)
between imagemi and transcoded imageT (mi, ti). Since
the imagemi and the transcoded imageT (mi, ti) may
differ in resolution, the imageT (mi, ti) is rescaled to the
resolution ofmi before comparison [11].



Eq. (1) is to be maximized under the constraints
∑n

i=1
S (T (mi, ti)) 6 S(D) , (2)

whereS(mi) is the file size of imagemi, andS(D) the
maximum allowed message size for deviceD, and under
the orientation-independent resolution constraints

zi max(wi, hi) 6 wD ,

zi min(wi, hi) 6 hD ,
(3)

for each imagemi, where R(D) = (wD, hD) is the
maximum allowed resolution for deviceD. Eq. (2)
expresses the constraint that the sum of resulting file sizes
must not exceed the maximum allowed message size,
and eqs. (3) express the constraint that the resolutions
of transcoded images must not exceed the terminal’s
maximum resolution.

This optimization problem can be formulated as a
distribution of effortproblem [13] where resources spent
correspond to the file sizes of images, the total budget to
the maximum permissible message size, and the objective
function is the overall message quality estimated by
eq. (1). While it is feasible to maximize eq. (1) exactly
by performing a great number of transcodings, it is
impractical to do so. Rather than computing eq. (1) and
eq. (2) exactly, we will rely on predictorŝQ(mi, ti) and
Ŝ(mi, ti) that estimate the resulting quality and file size,
repectively given a characterization of an imagemi (such
as original quality factor, file size, resolution, etc.) and
transcoding parametersti, allowing us to rewrite the
objective function as

Q̂(M,T ) =
∏n

i=1
Q̂(mi, ti) (4)

and the constraint in eq. (2) as
∑n

i=1
Ŝ(mi, ti) 6 S(D) . (5)

Eqs. (3) remain unchanged as they contain no uncertainty.
The particular form of eqs. (1) and (4) makes the

problem amenable to efficient solutions using polynomial-
time dynamic programming [13], which is the proposed
approach. The optimal predicted transcoding is given by

T̂ ∗ = arg max
T∈T (M,D)

Q̂(M,T ) , (6)

where theT are series of transcoding parameters drawn
from the set T (M,D) of all series of transcoding
parameters on messageM that satisfy constraints eq. (3)
and eq. (5) of deviceD.

The number of transcoding parameters considered for
the solving of eq. (6) will depend on the granularity of the
predictor as well as on the complexity of the optimization
problem one wants to solve, as proportional to the number
of images in the message times the number of predicted
transcoding parameters; we will further discuss this issue
in sectionV.

III. T RANSCODINGALGORITHMS

The predictor introduced in [10], [11], hereafter named
JQSP (JPEG Quality and Size Predictor), uses the original
image quality factor and a file size target to formulate

its prediction on the transcoding parameters and resulting
image quality. The predictor was trained on a corpus of
70 000 JPEG images obtained from a Web crawler in
2008 [9]. The density of the predictions is chosen so that,
for each original quality factor rounded to the nearest tens,
predicted file sizes are at least 5% apart, thus limiting the
number of possible transcoding parameters to examine.

To establish the upper-bound of obtainable quality for
the proposed predictor-based algorithm, we will use an
oracular predictor that returns the exact file size and
quality resulting from applying transcoding parameters—
the “prediction” is computed by actually performing the
transcoding. The oracle will serve to characterize the
graceful degradation of the proposed algorithm to the
imprecision of the predictors used. Indeed, the oracle
can be used to simulate predictors with known error
characteristics; and in the experiments we used, in
addition to the oracle, oracle-based predictors with 1%,
2%, 5% and 10% relative Gaussian error, 95% of the time.
To limit the number of oracular transcoding parameters
examined, the oracles yield predictions restricted to
quality factors of 10, 20, ...,100 and scalings of 10%,
20%, ...,100%.

The proposed optimization algorithm uses predictive
dynamic programming to yield a transcoding solution
maximizing eq. (4) and satisfying constraints of eqs. (3)
and (5). If the predicted solution, once executed, exceeds
the size constraint (it will always satisfy the resolution
constraints as there are no uncertainties in scaling),
the device maximum message sizeS(D) is reduced
by a factor α (set to 0.9 in our experiments) and
optimization is performed again. The process is repeated
until either the constraints are satisfied and transcoding
is successful, or the algorithm finds no possible solutions
given the predictor and the constraints, in which case the
transcoding fails.

Inspired by the fixed profile adaptation in [5], the
successive profile optimization algorithm applies succes-
sively more restrictive profiles to all images until the
transcoded message satisfies the device constraints. For
this algorithm, a profile defines the maximum resolu-
tion for images as well as the quality factor for com-
pression; the largest profile being, for example, images
limited to a resolution of640×480 with a quality fac-
tor of 90. The next profile could use the same resolu-
tion but a quality factor of 80; each successive profile re-
ducing either resolution, quality factor, or both. The de-
termination of useful profiles is heuristic and depends on
the performance objectives one sets. We will see that it
may not be useful to have a great number of profiles.

The second comparison algorithm uses a fixed quality
factor of 85 and, starting at the maximum resolution
allowable for the device, successively scales down images
by the same relative factor until the message fits the
device constraints. For each imagemi the largest scaling
factor 0<zi61 such that ziR(mi)6R(D) is found.
Adaptation proceeds by ajusting, at iterationj=1, 2, . . .,
a parameterβj , starting with β1=1, such that the
scaling factor applied to all images becomesβjzi. The
parameterβj is ajusted until the resulting images satisfy
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Figure. 1. Message capacity distributions, by algorithms and
predictors.

the device constraints. For fast convergence, the parameter
is adjusted so thatbj+1=

√
S(D)/Sj , whereSj is the

resulting message size at iterationj.

IV. RESULTS

The JPEG images for the experiments were obtained
from the Internet by the use of a Web crawler in the
fall of 2010 applied to various high visibility sites. Five
JPEG images are randomly picked amongst the 370 000
gathered images to form a message. The experiments
show the results for 220 of such messages, of average size
of 1.4MB and average image resolution of1140×838.
The target profile for the experiments is Image Rich
(images are limited to640×480 and message size to
100kB), thus requiring a15 : 1 reduction ratio. The
dynamic programming algorithm uses the JQSP predictor
as described previously, with the predictor trained on the
database described in [11] which is disjoint from the
370 000 images used to build the messages.

The resulting capacity, the portion of the maximum
message size used by the transcoded message, is shown
in Fig. 1. The scores of the objective function for the
different algorithms are show in Fig.2 and the average
SSIM for each attachment in a message is shown in Fig.3.

Fig. 4 shows the objective function scores resulting
from individual messages, each curve sorted in ascending
order separately. The curves do no allow to compare
the relative performance of adaptation algorithms on a
same message, but do render the general behavior of
the different algorithms and predictors. Fig.5 presents
a similar graph for the average message SSIM.

Fig. 6 shows the times in seconds for the dynamic
programming algorithm using the JQSP predictor, the
successive scalings and successive profiles algorithms for
our single threaded implementation on an Intel T9600
64 bits CPU at 2.8 GHz, using the Magick++ library to
perform actual transcodings [14]. Oracular times are not
shown, as not applicable to an actual implementation.
Table I shows the average number of transcodings and
retries (the number of times the algorithm must restart
with new constraints) for different algorithms. In our
experiment, the fail rate is zero, as all transcodings are
eventually successful. For a transcoding to fail, we must
have an image large enough so that with a quality factor
of 10 and a scaling of 10% it still exceeds the device
constraints, and there are no such images in the tested
messages.
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Figure. 2. Objective function score distributions, by algorithms
and predictors.
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Figure. 3. Average SSIM distributions, by algorithms and
predictors.

V. D ISCUSSION

Figs.1 and2 show that is does not suffice to maximize
capacity to achieve high quality. The great number
of profiles used in the successive profiles algorithm
allows it to get close to capacity, but the resulting
quality is lacking compared to the proposed solution. The
successive scalings algorithm gets very close to capacity,
but yields worse quality. This is not surprising as neither
explicitly maximize message quality, whether expressed
as eq. (1) or otherwise. Let us remark that maximizing
eq. (1), the products of SSIM scores, for a message is not
the same as maximizing the average SSIM score for the
same message; but Figs.4 and 5 show that the two are
highly correlated.

Figs. 2 and 5 show that the JQSP predictor behaves
close to the 10% relative oracular predictor, and figs.4
and 5 show that the predictor-based method yields a
quality significantly higher than the successive scalings
and successive profiles algorithms. These figures illustrate
that proposed algorithm is capable of graceful degradation
with increasing predictor error.

Fig. 6 shows that the run-time of dynamic programming
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Figure. 4. Objective function scores, by algorithms and
predictors.
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Figure. 5. Average SSIM by message, by algorithms and
predictors.
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Figure. 6. Message adaptation times distributions, by
algorithm.

is offset by the gain in fewer transcodings, as to be much
faster, on average, with an average of 5.55 transcodings
per message, than the successive scalings algorithm with
an average of 15.02, and than the successive profiles
algorithm with an average of 33.36, as shown in TableI.
The slight overshooting of the file size prediction for
the JQSP predictor keeps the proposed algorithm from
achieving maximal capacity, while still producing higher
quality messages, with the side-effect of keeping the
number of retries lowest after the oracular predictor; a
predictor that undershoots significantly would imply far
more transcodings before reaching a solution that satisfies
the device constraints.

Furthermore, the number of predicted transcod-
ing parameters examined during optimization plays
a non-negligible role in the proposed method perfor-
mance. Even if the dynamic programming algorithm is ef-
ficient, a great number of predicted transcoding parame-
ters per image means a larger graph to explore and neces-
sarily increased run-time, even with pruning, as run-time

Table I. COMPARED AVERAGES OF ALGORITHMS FOR A MESSAGE OF

5 ATTACHMENTS.

Optimization Transcodings Retries Objective
Algorithm Function

Oracle 5.00 0.00 0.35
1% 6.03 0.21 0.34
2% 6.54 0.31 0.33
5% 7.19 0.43 0.32
10% 8.25 0.65 0.30
JQSP 5.55 0.13 0.27

Profiles 33.36 5.67 0.22
Scalings 15.02 2.00 0.23

grows quadratically in the number of predicted transcod-
ing parameters [15]. It then becomes a trade-off be-
tween the precision of the predicted transcoding and run-
time. The successive scalings and successive profiles algo-
rithms are also subject the speed/quality trade-off, but the
results are far less interesting. The successive profiles al-
gorithm could use fewer profiles, but already the result-
ing quality is inferior to the proposed algorithm. The same
is true for the successive scalings method, which could
start with an aggressive scaling factor of, say,β1 = 0.8,
but that would result only in even worse quality.

VI. CONCLUSION

The proposed predictor-based dynamic programming
message adaptation algorithm maximizes explicitly an
objective function based on the SSIM over a complete
message rather than on individual images. We show that
this strategy does not require the predictors to be almost
exact to be useful as we saw that increasing prediction
error leads to graceful degradation. In addition, in our
experiments, we have shown that our proposed solution
is not only much faster, it also yield significantly higher
quality for transcoded messages than heuristics found in,
and inspired, by prior art.
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