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Abstract

The problem of adapting JPEG images to satisfy constraints such as file size and
resolution arises in a number of applications, from universal media access to mul-
timedia messaging services. Visually optimized adaptation, however, commands a
non-negligible computational cost which we aim to minimize using predictors. In pre-
vious works, we presented predictors and systems to achieve low-cost near-optimal
adaptation of JPEG images. In this work, we propose a new approach to file
size and quality prediction resulting from the transcoding of a JPEG image sub-
ject to changes in quality factor and resolution. We show that the new predictor
significantly outperforms the previously proposed solutions in accuracy.

1 Introduction

The need for efficient image adaptation arises in a number of contexts, ranging from

universal media access with varying browsing conditions [1, 2] to multimedia messaging

services (MMS) [3], and in each case, the challenge is to adapt images to fit given receiving

terminal and application constraints while simultaneously maximizing the user experience

and minimizing the computational cost of adaptation.
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In the context of MMS, for example, a receiving terminal is characterized by its

capabilities—or more exactly its limitations—such as the maximum resolution of images

it can display and the maximum message size it can receive and interpret correctly [4].

Adaptation can also include the case where the compression format itself needs to be

changed, but observations show that MMS image traffic, dominated by camera phone

images, is mostly composed of JPEG images. Accordingly, we will, in this study, concentrate

on the case of JPEG to JPEG image adaptation subject to changes in quality factor and

scaling.

Previous studies have addressed this particular problem, but the solutions they propose

are either still computationally expensive (and necessitating extensive modifications to

existing JPEG library software) or overly rigid, focusing on unrealistically constrained

transformations such as scaling by powers of two [5–7], or using only a small, fixed, number

of possible adaptations, without consideration for the perceived adaptation quality [1,8]. In

the context of high-volume service providing, whether for MMS or universal media access,

only the fastest adaptation methods yielding the best perceived quality can be considered.

For this purpose, we have, in previous works, proposed low-cost predictor-based adap-

tation systems [9–11]. These constant-time predictors, which we will refer to as JQSP1

(for JPEG Quality and Size Predictor) and JQSP2 in this work, are described in sec-

tion 3. The predictors are used in combination with an adaptation system to predict

the best transcoding parameters for adapting a JPEG image to given terminal con-

straints, where “best” is defined as most likely to minimize perceived distortion under the

considered viewing conditions as defined by the characteristics of the receiving terminal.

These predictors, although shown to perform satisfactorily, did not make use of all the

available information about images such as bits per pixel and resolution, both of which are

very likely to help formulate more accurate predictions about file size and quality resulting

from a given transcoding operation. However, the table-based schemes in our earlier works

do not easily lend themselves to a larger number of parameters, and we believe that the

uniform quantization of parameters is also an unnecessary restriction for the problem at

hand.

In this work, we propose to extend and improve the solutions previously presented by

the authors by including more information about images to in order help formulate more
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accurate predictions on file size and quality resulting from transcoding, and by lifting the

restrictions of the previous methods, in particular the uniform quantization of parameters.

To do so, we propose a method based on the clustering of transcoding operations as high-

dimensional vectors.

This work is structured as follows. The next section, section 2, presents the proposed

solution. Section 3 details the test methodology as well as the algorithms presented in

previous works. Section 4 presents the results from the proposed and previously proposed

prediction methods. In section 5, we discuss the results, accuracy, algorithmic complexity,

and the memory usage of the algorithms considered. Lastly, section 6 summarizes the results

and presents our concluding remarks.

2 Proposed Clustering Solution

In this section, we present the details of the enhanced predictor, EJQSP, the solution we

are proposing for the enhanced prediction of relative file size and quality resulting from a

JPEG image adaptation based on clustering [12]. We first describe the general problem of

clustering, then we describe its application to our particular objective.

The general clustering problem is as follows. We have n vectors in a d-dimensional space

that we wish to segregate into m different classes, that is, create a partition. Each subset

of the partition is represented by a single vector, its prototype, chosen so that the average

distance (or error) between the exemplars in the subset and the prototype is minimized

under a given metric. The objective is to find the partition with m subsets that minimizes

the overall error on all vectors.

More formally, let X={x1, x2, . . . , xn} be the n exemplars in R
d, which we want to

partition into C={C1, C2, . . . , Cm}, them subsets. The partition C is such that
⋃m

i=1
Ci=X

and Ci ∩ Cj=∅, for 1 6 i 6= j 6 m. Since the metric considered is the Euclidean distance,

the prototype for a subset Ci is its centroid, given by

x̄i =
1

|Ci|

∑

xj∈ Ci

xj ,
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and let X̄={x̄1, x̄2, . . . , x̄m} be the centroids corresponding to the subsets. The error

associated with a partition C is

E(C) =
m∑

i=1

∑

xj∈ Ci

‖xj − x̄i‖
2 , (1)

and the goal is to find the optimal partition C∗ such that

C∗ = argmin
C

E(C) . (2)

The application of interest in this work suggests that the exemplars will be d-dimensional

vectors encoding information about the original image, a transcoding operation, and the re-

sulting file size and quality; the latter two being the quantities to predict.

The original compressed image Ij is represented by a tuple (QFj, wj, hj , fj), where

QFj is the original quality factor with which the image Ij was compressed (and in

this work we assume that the quality factor complies with the semantics defined by

the Independent JPEG Group [13], that is, it varies from 0 to 100 by increments of

1), wj and hj its width and height respectively, and fj is the compressed file size of

image Ij. The transcoding parameters form a tuple (QFout, z) describing the new quality

factor QFout∈{10, 20, . . . , 100} and the scaling z∈{0.1, 0.2, . . . , 1.0} to apply to the image

(thereby yielding 100 different possible transcodings). Applying the transcoding parameters

(QFout, z) to the image Ij yields an image with resolution zwj×zhj compressed with a new

quality factor QFout, resulting in an observed quality of q(Ij, QFout, z), and a relative file

size of f(Ij, QFout, z) expressed as a ratio of the observed transcoded file size to the original

file size.

The resulting quality measured between the original and the transcoded image is

assessed by a quality metric; in our experiments, we opted for SSIM which we deem to

be more representative of perceived quality than the PSNR [14]. In the case where the

resolution of transcoded image differs from that of the original image (that is, z 6=1),

the transcoded image is scaled back to the original resolution for quality comparison.

In all cases, scaling is performed using a Blackman filter, chosen for its spectral

characteristics [15]. In previous works, we used a more sophisticated approach based on

viewing conditions that depended strongly on the receiving device; in this work, we will
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omit this consideration, for the sake of simplicity, and use the original resolution as the

viewing condition.

To the original data from the image and the transcoding operation, we will add two

features that allows a priori knowledge impossible to be learned from clustering alone to

be exploited. The first feature is the average number of bits per pixel of image Ij, denoted

bj, which is a measure of the busyness, or complexity, of the image. The second feature is

the difference in quality factors, QFout −QFj which gives information about changes in file

size and quality. We discuss their nature further in section 5.

The exemplars will be 9-dimensional vectors. For an image Ij, the associated exemplar

is given by

xj = (QFj, wj, hj , bj, QFout, z, QFout −QFj, f, q) , (3)

with transcoding parameters (QFout, z), and where, by abuse of notation, f and q stand

for f(Ij, QFout, z) and q(Ij, QFout, z), respectively.

Solving eq. (2) exactly is an NP-Hard problem [16–18], and therefore we have to

resort to approximate algorithms, such as K-Means [19], an algorithm very similar to

LBG [20], which, while sub-optimal, has been shown to converge rapidly under most

circumstances [21].

The K-Means algorithm proceeds iteratively until satisfactory convergence is reached.

The initialization consists of randomly choosing m vectors from X (without replacement)

to be the initial prototypes, the X̄0. Iterations proceed as follows. At iteration t = 1, 2, . . .,

for each vector xj ∈ X, we find the closest prototype x̄t−1,i ∈ X̄t−1 such that

i = argmin
i
‖xj − x̄t−1,i‖

2

and assign the vector xj to the subset Ct,i. All vectors assigned to a same subset Ct,i are

then averaged (by definition of centroids using Euclidean distance) to yield x̄t,i, a prototype

for the next iteration. The algorithm iterates until satisfactory convergence is reached, that

is, the error E(Ct), as given by eq. (1), fails to diminish significantly from E(Ct−1). In

our experiments, this threshold was set to a relative error reduction of α = 10−6 or less.

Algorithm 1 details the procedure as pseudo-code.

The L2 norm considered for eq. (2) and the lack of a distance matrix in the prob-
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Algorithm 1 K-Means pseudo-code.
{Inputs:
X, the exemplars
m, the number of prototypes,
α, the convergence threshold}

t← 0
E0 ← BIG NUM
X̄0 ← m random vectors from X (without replacement)
for all xj ∈ X do

aj ← argmini ‖xj − x̄0,i‖
2 {compute membership}

end for

repeat

t← t+ 1
nt ← {0, 0, . . . , 0} {m elements, the nt,i}
X̄t ← {0, 0, . . . , 0} {m elements, the x̄t,i}
for all xj ∈ X do

i← aj {reuse previously computed membership}
x̄t,i ← x̄t,i + xj {update centroid}
nt,i ← nt,i + 1 {update the number of exemplars in this subset}

end for

for i = 1 to m do

x̄t,i ← x̄t,i/nt,i {normalize centroids}
end for

Et = 0
for all xj ∈ X do

i← aj ← argmini ‖xj − x̄t,i‖
2 {updating membership}

Et ← Et + ‖xj − x̄t,i‖
2

end for

until converges(Et−1, Et, α)
{Outputs:
X̄t, the prototypes}

lem formulation imply that the exemplars must lie in an isotropic space; in other words,

all dimensions are spread along comparable scales. If the exemplars do not lie in such

a space, the usual approach is to use principal component analysis, or similar tech-

niques, to project the exemplars onto a vector space that provides isotropism [22]. Results

suggest that, in our case, simple dimension-wise normalization by the dimension aver-

age suffices to provide satisfactory results.

What remains is to decide on the number of clusters, m. The number of clusters m is

subject to a variety of trade-offs between prediction accuracy and computational cost of

optimization and prediction, issues discussed further in section 5, but we will show that m

does not need to be exceedingly large to outperform previously proposed predictors [9–11].
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3 Prediction Algorithms

The data set used in the experiments for training and testing is composed of approximately

73000 JPEG images obtained by a Web crawler with highly popular Web sites as origination

points [9]. For the experiments presented in this paper, the images have been split

90/10 for disjoint training and test sets, and each image was subjected to 100 different

transcodings (corresponding to all possible quality factors QFout ∈ {10, 20, . . . , 100} and

scalings z ∈ {0.1, 0.2, . . . , 1.0}), yielding approximately 6 570 000 training exemplars and

730 000 test exemplars, each modeled after eq. (3).

The first predictor we proposed [9], denoted here JQSP1, for JPEG Quality and Size

Predictor, quantizes QFin (corresponding to the QFj of this work), QFout, and z to Q̃F in,

Q̃F out, and z̃, respectively, in order to use a fixed-density table for the predictions (the

“tilde” notation denotes quantized values). In [9], we constrained Q̃F in and Q̃F out to the

set {10, 20, . . . , 100}, and z̃ to {0.1, 0.2, . . . , 1.0}; resulting in the indices of a 10×10×10

table whose entries contained the predictions. The predictions, of both resulting file size

and resulting quality, are computed as the centroids of the exemplars with corresponding

Q̃F in, Q̃F out, and z̃.

The predictor presented in [11], denoted here JQSP2, also uses a table but rather

than using QFin, QFout and z as indices, it uses Q̃F in, z̃, and a target file size to predict

the transcoding parameter Q̂F out and the resulting quality q̂ (the “hat notation” denotes

predicted values). The predictions are formulated as the centroid of the relative file size and

the centroid of quality resulting from transcoding operations, selected amongst all training

exemplars that minimize the difference with the target relative file size while maximizing

quality. The details are given in extenso in [11], but suffice to say that the predictions are

represented in a table indexed by z̃ and f̃ , the target file size. The density of the table can

be adjusted by varying the densities of the values that z̃ and f̃ can take; in our experiments

we constrained z̃ ∈ {0.1, 0.2, . . . , 1.0}, and f̃ varies from 0.001 to 1.0 by steps of 0.001, thus

minimizing errors due to quantization on f .

The variant of K-Means presented in Algorithm 1 is not very sensitive to the initial

conditions (that is, the randomly chosen vectors that form X̄0) but its stochastic nature

nevertheless demands that we perform several independent optimizations. In our case we

opted for 30, in order to obtain a good solution by selecting the optimization with the
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smallest error as defined by eq. (1). The distribution of errors is presented in section 4 and

discussed in section 5.

For all algorithms, training was performed on the first 90% of the exemplars. Tests

were conducted by submitting the remaining 10% of the exemplars comprising all possible

transcodings (c.f. eq. (3)) to the various prediction algorithms, comparing the observed

resulting file size f and quality q to the predicted file size f̂ and quality q̂.

The error considered in the results (Figs. 1 and 2) is the average absolute error.

Because the quantities predicted lie in [0, 1], using a mean squared error would result

in exceedingly small quantities (as, for example, 0.12=0.01) which would exaggerate the

methods’ performance.

4 Results

The predictors JQSP1, JQSP2, and the proposed EJQSP are compared using the same test

exemplars—10% of all exemplars, disjoint from the training set, as discussed in section 3.

For each test exemplar given by eq. (3), the predictors were asked to predict f and q, and

the absolute errors f−f̂ and q−q̂ were measured. The EJQSP predictor was optimized

for arbitrary, but likely to be chosen, numbers of prototypes (namely, 10, 25, 50, 100, 250,

500, 1000, 2000, 3000, 4000, 5000, 10000, and 20000) to show how the performance of the

proposed method increases with the number of prototypes.

Examining Fig. 1, we see that the EJQSP predictor breaks even, on the accuracy of

prediction of the resulting file size, with the predictor JQSP1 using only 500 prototypes and

with JQSP2 using 2000. The performance difference continues to increase with the number

of prototypes, yielding an error ≈40% smaller than JQSP1, and approximately 27% less

than JQSP2 with 20 000 prototypes. While the EJQSP prediction error reduction from

using 20 000 prototypes rather than 10 000 is ≈10%, it is obtained at the cost of doubling

the run-time since, as we discuss further in section 5, finding the nearest neighbor is a linear

time problem. Fig. 2, shows similar behavior for quality prediction. The EJQSP predictor

breaks even with JQSP2 using approximately 1500 prototypes, but breaks even with JQSP1

at 4000; however, EJQSP ultimately yields an error that is ≈20% less than that of JQSP2

and ≈12% less than JQSP1. Both figures clearly demonstrate that the EJQSP prediction
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Figure 1: Average absolute error for relative size prediction.

accuracy in both file size and quality, increases with the number of prototypes; the large

number of training exemplars enabling the use of a model with a large capacity [12].

Fig. 3 shows the distributions of the prediction error f̂−f (the error of the predicted

relative file size f̂ against the observed relative file size f) for the predictors considered

in this study. Examining Fig. 3, we can see that the JQSP1 predictor, despite peaking

near zero, exhibits strong skewness resulting in a definite propensity to overshoot the

file size prediction. An algorithm using the JQSP1 predictor will therefore tend to take

conservative decisions, probably failing to use the full file size budget. Predictor JQSP2,

which also overshoots slightly, is already much better than JQSP1; not only does it not

overshoot as much, it exhibits a stronger peak near zero, indicating that a much greater

proportion of predictions are within an error of a few percent. Finally, we see that the novel

EJQSP, using 20000 prototypes, has smaller overall relative file size prediction error, shows

a general behavior comparable to JQSP2; however the distribution of errors for EJQSP
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Figure 2: Average absolute error for SSIM prediction.

sports an even stronger peak around zero and it is less likely to overshoot.

While Fig. 3 shows that the individual relative file size predictors behave differently,

Fig. 4 shows that for the resulting quality prediction error q̂−q (the error of the predicted

resulting quality q̂ versus the observed resulting quality q), the behavior is similar. For each

predictor, the prediction error exhibits two distinct components: a component similar to

a skewed Gaussian [23] and a strong peak at zero. While the JQSP2 predictor formulated

better relative file size predictions than the JQSP1 predictor, the reverse is true for quality

prediction, a fact that is also reflected in Fig. 2 where the overall error on quality prediction

of JQSP1 is ≈ 8% smaller than the error of JQSP2. While JQSP2 was designed to avoid

overshooting on size prediction, there is no such provision for its quality prediction and, in

fact, it overestimates resulting quality. The EJQSP predictor, like the JQSP1 predictor,

tend to undershoot for prediction, however, the central peak and the more compact

distribution yields much better overall results than previous predictors, as shown in all
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Figure 3: Distribution of errors on size prediction.

the figures.

5 Discussion

For all algorithms, training and test exemplars must be obtained. In our experiments, it

meant subjecting every image from the database to 100 different transcodings—varying

over Q̃F out and z̃—to yield a sufficiently dense pool of transcoding examples. This process

is of course very expensive but can be performed off-line as trends in image characteristics

vary over the years at application-specific intervals.

Training the JQSP1 predictor is O(n) in the number of exemplars, n. Training consists,

for each exemplar xj ∈ X, in quantizing the corresponding Q̃F in, Q̃F out, and z̃, to index the
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Figure 4: Distribution of errors on SSIM prediction.

table and accumulate the partial sums to compute the centroids. The centroid normalization

is O(|Q̃F in| |Q̃F out| |z̃|), where, by abuse of notation, |Q̃F in|, |Q̃F out|, and |z̃| denote the

number of values Q̃F in, Q̃F out, and z̃ can take. The cost of normalization, proportional to

the number of entries in the table, is negligible compared to n, since the number of entries

must be very small compared to n in order to avoid the problem of context dilution [12].

The operating principle of the JQSP2 predictor is quite different, as it formulates a

prediction on the QFout needed to meet the target file size given a constraint z. It also

predicts the resulting file size and quality and its design makes it unlikely to overshoot

significantly on predicted file size [11], a fact confirmed by Fig. 3. The JQSP2 training

phase constructs the table by going through all the images from the training set and

selecting transcodings that are the closest to the desired file size with a scaling z without

exceeding it to form the centroids. This results in a procedure O(n |Q̃F in| |z̃| |f̃ |), where,

again, by abuse of notation, |f̃ | denotes the number of values f̃ can take.
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EJQSP formulates its prediction using clustering, as explained in section 2. Exact

clustering, that is, solving eq. (2) for EJQSP exactly is NP-Hard [16–18], as we observed

earlier, justifying the use of an approximate algorithm such as K-means. An iteration of

K-Means is O(m n d) for m prototypes and n exemplars in R
d. Since K-means converges

extremely rapidly, O(lg n) iterations seem to be sufficient for moderately large m and n;

leaving an optimization complexity of O(d m n lg n).

Predicting a value using algorithms JQSP1 and JQSP2 is an O(1) process, since it

suffice to quantize the query parameters and use them directly to index the table. In both

case, the O(1) figure assumes uniform quantization on all parameters; other quantization

schemes will lead to different complexities and prediction performance; however, in this

paper we reproduced the testing condition of previous works [9–11]. The predictor we

propose here formulates its prediction in O(m d), where m is the number of prototypes in

R
d, as computing the exact nearest neighbor requires linear time, although it can be made

sub-linear with preprocessing [18]; and approximate solutions [24] may not be welcomed as

they are likely to introduce errors.

Adding features that exploit a priori knowledge usually helps classification and

prediction tasks. Specifically, the bits-per-pixel feature will help distinguish images of

comparable resolution but with quite different characteristics. For example, an image of

a featureless blue sky will behave differently under transformation than a busy, detailed

image, and the predictor must be able to take this information into account. The other

feature, QFj−QFout, helps because it groups together similar drops in quality onto similar

hyperplanes, a fact we verified experimentally.

JQSP1 uses a 10×10×10 table with two values per entry (relative file size and quality),

and while the table density can be adjusted, it is unlikely that it poses any kind of problems

in a server-type environment as the table can be made a read-only singleton and that look-

up is O(1). Furthermore, the semantics of the quality factor imposes an upper bound on

table density of O(|z̃|) with a hidden constant of 100×100 which corresponds to the density

of QFj and QFout, where, again by abuse of notation, |z̃| denotes the number of values z̃ can

take. The same applies for JQSP2, but instead of a term in |z̃| we will have an additional

term in |f̃ |, the number of values f̃ can take. For EJQSP, the storage needed for the clusters

is O(m d), where m is the number of prototypes in R
d.
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There are trade-offs between storage and complexity to consider; one can adjust the

parameters of the various algorithms to obtain similar storage consumptions, but storage,

especially for server-side applications, is likely to be negligible. The algorithmic complexity

of querying the predictors is moderate in all cases; leaving prediction accuracy as the

foremost factor to consider. We have shown, from the results in section 4, that the proposed

EJQSP predictor outperforms the previously proposed JQSP1 and JQSP2 predictors

significantly, both for resulting file size and quality.

6 Conclusion

Despite formulating predictions in linear time in the number of prototypes (when consid-

ering the dimensionality of the vector space as constant), rather than the constant time

JQSP1 and JQSP2 predictors, the proposed solution in this work, the EJQSP predictor, us-

ing 20 000 centroids, yields significantly better prediction of resulting file size and quality.

It also yields ≈ 40% smaller prediction error on file sizes and ≈ 12% on quality com-

pared to JQSP1, while yielding ≈ 27% smaller on size and ≈ 20% on quality compared to

JQSP2. The new predictor, with its reduced error, can be combined with systems such as

those presented in [10,11] to yield even more efficient transcoding systems, whether for uni-

versal media access or more specific applications such as multimedia messaging.
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