Introduction

Pointers
U R Efficient encodings

Conclusion

Steven Pigeon

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

UQAR

Small is Beautiful!
Techniques to minimize memory footprint

Steven Pigeon
Professeur

Département de mathématiques, informatique et génie
steven_pigeon@ugar.ca

Université du Québec a Rimouski

September 17, 2019

Introduction

Pointers
Efficient encod

Conclusion

But why?

Embedded systems

Mobile computing

No infinite memory!

Play nicely with the memory hierarchy and 1/O

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers
Efficient encod

Conclusion

Compact Data Structures

Today, we'll look at two things:

Pointers: their use and their representations,

enums and “snug fit" types.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointers Pointer-Free Structures
Compressed Pointers

Pointers, pointers, pointers everywhere!

Many data structures are pointer-rich (lists, trees, HATs):

A non negligible part of memory is composed of pointers.
Calls to new/delete are not cheap.

May cause fragmentation.

There's a trade-off between how much we'd like to get rid of
pointers and

how much memory is wasted by unused slots;

how complexity grows by managing space without pointers.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointer-Free Structures
Compressed Pointers

Conclusion

Pointer-Free data structures

Array Lists (like std: :vector<T>)

LT P

Paged Lists and Paged Trees

tail 1
head = []][] [1] T2

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Pointer-Free Structures
Efficient encodings Compressed Pointers

Conclusion

Compressed Pointers

To compress pointers, we'll use two key facts:

The logical address space is considerably larger than the
physically addressable memory,

Programs usually use only a (very) small portion of their
logical address space.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

UQAR

Efficient encodings

Introduction

Pointers Pointer-Free Structures

Conclusion

Compressed Pointers

Compressed Pointers: x86_64 Flat Memory Model and Implementations

FFFFFFFFFFFFFFEFF FFFFFFFFFFFFFFEF FFFFFFFFFFFFFFFF
FFFF800000000000
FF80000000000000
noncanonical addr noncanonical addr ?888888888?88888
OO7FFFFFFFFFFFFF
O0O0O7FFFFFFFFFFF
0000000000000000 0000000000000000 0000000000000000

48 bits Addresses

56 bits Addresses

64 bits Addresses

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Pointer-Free Structures
Efficient encodings Compressed Pointers

Conclusion

Compressed Pointers: A Program and the x86_64 Flat Memory Model

A typical program has 5-6
regions:
Sl The code segment,
l The data segment,
Statically initialized Data (BSS),
.s0 data
o The heap,
T : The stack,
- ...possibly shared memory.
Heap
BSS
Eaza Where they are is decided at
o load time (Address Space
ooomoouoouosooso Layout Randomization)

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Pointer-Free Structures
Efficient encodings Compressed Pointers

Conclusion

Compressed Pointers

Pointers are

Heap-like (close to the start of the heap)

Stack-like (close to the top of the stack)

Since stack and heap are far apart, we can use this to compress
pointers differentially.

Or data-like if we use pointers in the data-segment.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointers Pointer-Free Structures
Compressed Pointers

Compressed Pointers: Program Addresses

The Gnu C Library (a.k.a glibc) conveniently provides symbols to
locate these regions:

extern char // actual type not that important!
_init, // initialization begins here (before main)
_start, // program entry point (before main)
_fini, // final initialization (cleanup)
etext, // end of ’text’ (code)
_data_start, // beginning of (initialized) data segment
edata, // end of (initialized) data segment=begin of bss
__bss_start, // Static default-init. (Block Started by Symbol)
end; // end of (all) data segments = base of the heap

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointers Pointer-Free Structures
Compressed Pointers

Compressed Pointers: Helpers

The compressed pointers will need an (unsigned) arithmetic type,
uint_pointer_t, as well as the number of effective address bits
(because uintptr_t is optional!).

using uint_pointer_.t = uint64_t; // implementation-defined
constexpr int effective_address bits=47; // implementation-defined
value!

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointers Pointer-Free Structures
Compressed Pointers

Compressed Pointers: Template Class

template <typename T, // type to point to
std::size_t bits=40,
std::size_t alignment_bits=log2(alignof(T))
>
class compressed_ptr
{
public:
using uptr_t=typename uint_pointer_t<sizeof (T*)>::type;
protected:
static constexpr std::size_t nb_bytes=bytes_from bits(bits);
//0x0..07£ff. .fff+1, implementation-defined
static constexpr uptr_t top=(uptr_t{i}<<effective_address_bits);
static constexpr uptr_t direction bit=(uptr_t{1}<<(bits-1));
static constexpr uptr_t mask=direction_bit-1;
uint8_t ptr[nb_bytes]; // compressed ptr

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointers Pointer-Free Structures
Compressed Pointers

Compressed Pointers: Compressing the pointer

void p_compress(T * p)

uptr_t v{reinterpret_cast<uptr_t>(p)};
if (v)
{
uptr_t bottom=reinterpret_cast<uptr_t>(&end-sizeof(T));
uptr_t bottom.diff= v-bottom; //udiff(v,bottom);
uptr_t top-diff = top-v;//udiff(v,top);
uptr-t diff; // best difference
uptr_t dbit; // direction bit
if (bottom diff < top.diff)

diff=bottom_diff >> alignment_bits; // heap-like
dbit=0;

else

diff=top.diff >> alignment bits; // stack-like
dbit=direction_bit;

if (diff>mask) throw std::range_error("pointer too big!");
v=dbit|diff;

copy<nb_bytes>((char*)&v, (char*)ptr); // assumes little endian

Pointers Pointer-Free Structures
Compressed Pointers

Compressed Pointers: Decompressing the pointer

T * p_decompress() const
{
uptr_t v=0;
copy<nb_bytes>((char*)ptr, (char*)&v); // assumes little endian
if (v)
{
uptr_t bottom=reinterpret_cast<uptr_t>(&end-sizeof(T));
if (v & direction bit)
v=top-((v & mask)<<alignment_bits); // stack-like
else
v=bottom+(v<<alignment bits); // heap-like

return reinterpret_cast<T*>(v);

}

else return nullptr;

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointers Pointer-Free Structures
Compressed Pointers

Compressed Pointers: Using Compressed Pointers

The class has the needed casts and operators to behave like a
normal pointer.

for (int i=0;i<10;i++)
int *t=new int;
compressed._ptr<int,36> z(t);

std::cout
<< std::hex << std::setw(16) << t
<< ’\t’
<< std::hex << std::setw(16) << z
<< std::endl;

delete z;

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Pointers Pointer-Free Structures
Compressed Pointers

Compressed Pointers: Using Compressed Pointers

Compressed pointers...

Can be tailored depending the available memory,
Aren't very expensive to (de)compress,
Have the less strict alignment requirements possible (uint8_t),

Yields pointers 2,3,4 bytes shorter.

They also could be incorporated into unique_ptr, shared ptr, ...

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Po S Snug Fit
Efficient encodings Sub-bitfields

Conclusion

Just Enough

We often use larger than necessary types.

One example of this, is enum.

Without underlying type specification, it's int (§9.6.1.5)

With specification, it can be as tight as we want, as long as it allows
representation of all enumerators.

enum class gizmo:char { rock, paper, scissors };

Still wasteful if only a few enumerators, especially with no initializer in the
enumerator-definition (§9.6.1.2) as only a few bits would be necessary.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
U R Efficient encodings Sub-bitfields

Conclusion

Just Enough and Bit-Fields

What about using bit-fields?

class zigzig

{

char choice:2,
level:3;
//filler:3

};...

Here, we should use a constexpr that finds the number of bits
needed to represent the maximum value for an enum) and also a
template that finds the smallest storage for the bitfield.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
U R Efficient encodings Sub-bitfields

Conclusion

Just Enough

template <int x> struct __just_enough uint; // incomplete type

// more types as needed, implementation-defined

template <> struct __just_enough uint<64> { using type = uint64.t; };
template <> struct __just_enough uint<32> { using type = uint32.t; };
template <> struct __just_enough uint<16> { using type = uint16_t; };
template <> struct __just_enough uint<8> { using type = uint8._t; };

template <const int x>

using just_enough uint=

typename

__just_enough_uint<(x>32)764: ((x>16)732: ((x>8)716:8))>: :type;

constexpr std::size_t bits_from value(std::size_t n)
{ return (n<2)71:(1+bits_from_value(n/2)); }

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
U R Efficient encodings Sub-bitfields

Conclusion

Just Enough

Template just_enough uint<int>, with constexpr function
bits_from value, lets us get the smallest integer that
accommodates the largest desired value:

just_enough uint<bits_from_value(10000)> x; // likely uinti16_t

(Smaller integer types will have smaller (“less strict”) alignment,
so possibly less space lost to alignment.)

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
U R Efficient encodings Sub-bitfields

Conclusion

Just Enough and Bit-Fields

What about using bit-fields? Let's look at level. It uses 3
bits, but has only 5 values.

class zigzig

0 000

Jjust_enough_uint<5> 1 001
choice:bits_from_value(3), 2 010
level:bits_from_value(4);

3011

b 4 100
, . 5 101 wasted
...but that's still wasteful! 6 110 wasted

7 111 wasted

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Po S Snug Fit
Efficient encodings Sub-bitfields

Conclusion

On the Efficiency of Bit-Fields

Let's define “Bit Efficiency” as the number of bits needed to
encode the value to the number of bits in the bit-field:

logo v logy v
log,2" n

To maximize efficiency, either we bring v to 2" or... we choose n
so that 2" =~ v...

Ideally, we would use

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Snug Fit
U R Efficient encodings Sub-bitfields

On the Efficiency of Bit-Fields

While we can only allocate entire bits, we should be able to share bits between
values, arbitrarily finely.

Say we have 3 fields, with 3, 5, and 11 possible values, a classical bit field
would use 2, 3 and 4 bits per field, for a total of 9 bits (fits on short).

But if we use fractions of bits, we should be able to use

log, 3 + log, 5 + log, 11 = log,(3-5-11) ~ 7.36
bits... which now fits on a byte.

Indeed, we have 3 x 5 x 11 = 165 possible combinations!

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Po S Snug Fit
Efficient encodings Sub-bitfields

Conclusion

Fractional bit Arithmetic

If you agree that
x << 3 = x*23 = x*8
then you must also agree that
x*5 = x*21°825 — ¥ << log, 5

This will gives us a mean for

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
U R Efficient encodings Sub-bitfields

Conclusion

Fractional Bit Arithmetic

The “fractional-bit or” is simply addition, if (and only if) there's
no carry.
You will agree that

x|3 =x+3
if (and only if) there's no carry.
We can therefore combine both results:

x*¥5+v = (x << log, 5)+v

It will “shift” x by log, 5, just enough to or/add a value v between
0 and 4.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
U R Efficient encodings Sub-bitfields

Conclusion

Sub-bitfields

We can generalize the method to encode any number of values.

Let's say again we have fields with 3, 5, and 11 possible values, which we want
to set to specific values v1=2, v2=3, and v3=9. We would compute

b=((v3)*x5+v2)*3+vl; // ((9)*5+3)*3+2=146

Extraction, fortunately, isn't very complex:

vi=b % 3; // 14673=2

b/=3; // 146/3=48
v3=b % 5; // 48%5=3
b/=5; // 48/5=9
v3=b; // =9

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
U R Efficient encodings Sub-bitfields

Conclusion

Sub-bitfields: Extracting a single field

Let ny, no, ..., np, the number of possible values for each of the b
fields. Let
po=1
and
k—1
Pk = H ni
i=1

The product of all numbers of values that precede the kth field.
The value of the kth field is

(v div px) mod ni

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction
r Snug Fit
Sub-bitfields

UQAR

Sub-bitfields: Setting a single field

Conclusion

To set the kth field with new value ¢, we compute:

(v = (v mod pyi1)) + ¢ pr + (v mod py)

In this formula,

(v mod px) is the “masked” lower part, the k — 1 first fields;

(v — (v mod px+1)) is the “masked” upper part, the value without the k
first fields;

C - pk is the value ¢ “shifted” in the kth slot.

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Snug Fit
U R Efficient encodings Sub-bitfields

Sub-bitfields: (Almost) Everything Is Compile-Time

If the numbers of fields and the number of values per field are
known at compile-time, we can compute the p, at compile-time!

We will have set and get functions that take the field number as
a template argument.

Let's say we use a std::initializer_list<int> to declare the
numbers of values per field (and also the number of fields).

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointers Snug Fit
Efficient encodings Sub-bitfields

Conclusion

Sub-bitfields: Computing the py

constexpr int prods(imt f,
const std::initializer_list<int>::const_iterator & t)

{
}

constexpr int prods(imt f,
const std::initializer list<int> & 1)

{
}

return f 7 (xt*prods(f-1,t+1)) : 1;

return prods(f,1l.begin());

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Snug Fit
ent encodings Sub-bitfields

Sub-bitfields: Extracting and Setting

constexpr int next(int f,
const std::initializer_list<int>::const_iterator & t)

return f ? (next(f-1,t+1)) : *t;
constexpr int next(int f,
const std::initializer_list<int> & 1)
return next(f,1l.begin());
template <int f>

constexpr int t_get(int c,
const std::initializer_list<int> & n)

{

return (c/prods(f,n)) % next(f,n);

template <int f>
constexpr void t_set(int & c, int v,
const std::initializer_list<int> & n)

c=(c-(c % prods(f+1,n))) + (v¥prods(f,n)) + (c % prods(f,n));

Snug Fit
ent encodings Sub-bitfields

Sub-bitfields: A Complete Declaration

class subbitfield test
protected:
static constexpr std::initializer_list<int> ranges{11,3,4,5,12};
static constexpr int nb_fields=ranges.end()-ranges.begin();
static constexpr int nb_bits=bits_from_value(prods(ranges));
using subbit_type = just_enough_ uint<nb_bits>;
static constexpr int nb_stowaway_bits=bits_from_type<subbit_type>::value-nb_bits;
subbit_type
sub_bits: nb_bits,
stowaway: nb_stowaway. bits; // available (boom! if ==0)

public:

subbitfield test(): sub_bits(subbitfield init({7,1,3,3,9},ranges)),stowaway(0)

Introduction

U QA R Efficient encodi 1’

Conclusion

“talk()

After this talk:

We know it's possible to (mostly) dispense with pointers;
We understand how we can compress pointers;

We understand how do use sub-bitfields.

Still so much more to do!

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

Introduction

Pointe
Efficient encodin

Conclusion

= steven_pigeon@uqgar.ca

@steven_pigeon

Steven Pigeon Small is Beautiful! Techniques to minimize memory footprint

	Introduction
	Pointers
	Pointer-Free Structures
	Compressed Pointers

	Efficient encodings
	Snug Fit
	Sub-bitfields

	Conclusion

