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Abstract

Computing n! efficiently and accurately is notoriously difficult. Many have proposed
approximations, varying in accuracy and in computational complexity. Interesting
and useful approximations are both accurate and computationally inexpensive, and,
if possible, exact up to machine-precision floating-point numbers. In this paper, we
exploit an observation on a previous approximation by Hodgman to obtain a new class
of correction terms using simple, but optimal given their degree, rational functions. We
show that the proposed approximations are more accurate than some of the best-known
approximations while remaining computationally inexpensive.
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1 An approximation by Hodgman
The best-known series to compute n! is most certainly Stirling’s [18] series

n! =
√
2πn

(n
e

)n(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+ · · ·

)
, (1)

where the numerators and denominators are given by sequences A001163 and A001164 from
the OEIS [16, 17]. We may truncate the series to

n! ≈
√
2πn

(n
e

)n(
1 +

1

12n

)
(2)

as a trade-off between accuracy and speed of computation. However, using only 1 + 1
12n

as a
correction term makes eq. (2) underestimate n!. To counter this effect, a proposition, likely
by Hodgman [6, p. 326], is to use

n! ≈
√
2πn

(n
e

)n(
1 +

1

12n− 1

)
, (3)
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but it now overestimates n!—while yielding a larger error than eq. (2), which may explain
why this approximation disappeared from ulterior editions. But if eq. (2) underestimates
n!, eq. (3) overestimates n!, and 1

12n−α is a continuous function, then, by the intermediate
value theorem, there must be a value or function α, with −1 < α < 0, such that the error is
zero. However, to obtain a computationally simple formula, we must limit the form α can
take. For this work, we will limit ourselves to rational functions of small degree d in n, noted
α(d, n). Let then

Pα,d(n) =
√
2πn

(n
e

)n(
1 +

1

12n+ α(d, n)

)
(4)

be the approximation to n! in which α(d, n) is used.
We will find the optimal rational function α(d, n), where the degree d is chosen in order

to satisfy one’s trade-off between accuracy and computational cost. For d = 0, α(0, n) will
be a constant, while for d > 0, α(d, n) will be a non-constant rational function of degree d.
In either case, it will yield a correction term of degree d+ 1, as we will show.

In this paper, we will present a new method to find the optimal rational function
α(d, n) for any desired degree d, starting, in section 2, with the special case d = 0, then,
in section 3, for arbitrary degree d. In section 4, we will compare our results with some of the
previously known approximations. Section 5 discusses the implementation and computational
complexity of our proposed approximations. We conclude in section 6.

2 Optimal constant α
To find the optimal expression for α(d, n), we first notice that the squared error

E =
(
n!− Pα,d(n)

)2
is convex in α(d, n). We can therefore find α(d, n) by solving

∂E

∂α(d, n)
= 0 for α(d, n). This

is equivalent to solving

1 +
1

12n+ α(d, n)
= 1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+ · · · (5)

for α(d, n). Using α as a shorthand for α(d, n), we rework eq. (5) to obtain

α = −1

2
− α

24n
+

139

360n
+

139α

4320n2
+

571

17280n2
+

571α

207360n3
− 163879

1451520n3
+ · · · (6)

If we want α to be a constant, that is, use α(0, n), we keep only the constant terms from
eq. (6), and we find α = −1

2
. Substituting α = −1

2
back into eq. (4), we obtain the optimal

asymptotic approximation (for α constant)

n! ∼ Pα,0(n) =
√
2πn

(n
e

)n(
1 +

1

12n− 1
2

)
, (7)

resulting in a first degree rational function for the correction term,

n! ∼ Pα,0(n) =
√
2πn

(n
e

)n(24n+ 1

24n− 1

)
.
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3 Optimal Degree-Limited Solutions
To solve for α(d, n) for a given degree d, we must retain from eq. (6) only terms which are
of degree d or less. If we chose d = 1, we retain the terms of degree 0 (constants) and 1, that
is,

α = −1

2
− α

24n
+

139

360n
,

from which we get, by isolating α, α(1, n) = −1

2
+

293

720n+ 30
. This yields the much better

asymptotic approximation

n! ∼ Pα,1(n) =
√
2πn

(n
e

)n(
1 +

1

12n− 1
2 + 293

720n+30

)
(8a)

=
√
2πn

(n
e

)n(
1 +

360n+ 15

4320n2 + 139

)
, (8b)

(8)

resulting in a second degree rational function for the correction term. Solving eq. (6) for a
second degree rational function α(2, n), we retain

α = −1

2
− α

24n
+

139

360n
+

139α

4320n2
+

571

17280n2
,

giving us α(2, n) = −1

2
+

7032n+ 293

17280n2 + 720n− 556
. The approximation becomes

n! ∼ Pα,2(n) =
√
2πn

(n
e

)n(
1 +

1

12n− 1
2 + 7032n+293

17280n2+720n−556

)
(9a)

=
√
2πn

(n
e

)n(
1 +

17280n2 + 720n− 556

207360n3 + 571

)
, (9b)

(9)

which now has a third degree correction term. Solving eq. (6) for a third degree rational
function α(3, n), we retain

α = −1

2
− α

24n
+

139

360n
+

139α

4320n2
+

571

17280n2
+

571α

207360n3
− 163879

1451520n3
,

yielding α(3, n) = −1

2
+

1181376n2 + 49224n− 331755

2903040n3 + 120960n2 − 93408n− 7994
, and therefore

n! ∼ Pα,3(n) =
√
2πn

(n
e

)n(
1 +

1

12n− 1
2 + 1181376n2+49224n−331755

2903040n3+120960n2−93408n−7994

)
(10a)

=
√
2πn

(n
e

)n(
1 +

1451520n3 + 60480n2 − 46704n− 3997

17418240n4 − 163879

)
, (10b)

(10)

resulting in a fourth degree rational function for the correction term.
We could find α(4, n), α(5, n), etc., to yield increasingly more accurate approximations,

but each new solution would be also increasingly computationally demanding. For a
good trade-off between accuracy and computation, we are likely to retain only low-degree
approximations, such as eqs. (7) to (10). Complexity of evaluation is discussed in section 5.
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Figure 1: Comparisons of correction terms of degree 1.

4 Compared Accuracy
To compare the accuracy of the proposed approximations, we will use the absolute relative
error

E(n!, a) =

∣∣∣∣n!− an!

∣∣∣∣ ,
where a is the approximation to n! being evaluated. Since we are interested in simple ap-
proximations, we will exclude from this study costly approximations involving trigonometric
functions, infinite series, (infinite) continued fractions, or Bernoulli numbers [20, 11, 8]. We
will, however, compare our solutions to Mohanty’s and Rummens’ formula [9], which is a re-
sponse to Weissman’s [19] comment on Feller’s and Kasper’s approximation [4], itself derived
from an identity by Burnside [2]. We will also compare our solutions to Nemes’ [13], Mor-
tici’s [10], and Gosper’s approximations [5].

In fig. 1 and in table 1, we compare the relative error of eqs. (2), (3), and (7) to n!
computed exactly using arbitrary-precision arithmetic. While Hodgman’s correction, eq. (3),
does worse than the Stirling series truncated to its first two terms, eq. (2), the added error
is asymptotically negligible. However, the correction with α = −1

2
does much better than

either preceding approximations. We notice, in the lower-right corner of fig. 1, the effects of
the approximation reaching machine-precision floating point accuracy. We will use arbitrary-
precision arithmetic in subsequent figures.

We show the absolute relative errors of eqs. (7) to (10) in fig. 2 and table 2, using
arbitrary-precision arithmetic. In fig. 2, one notices immediately dips in the absolute relative
errors of eqs. (8) and (10). These correspond to values of n where the approximation is equal
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n 1 + 1
12n 1 + 1

12n−1 1 + 1
12n− 1

2

1 0.00102 0.00597 0.00232
10 0.00003 0.00004 2.81813× 10−6

20 8.30951× 10−6 9.05176× 10−6 3.53003× 10−7

30 3.74804× 10−6 3.96804× 10−6 1.04634× 10−7

40 2.12373× 10−6 2.21656× 10−6 4.41486× 10−8

50 1.36513× 10−6 1.41265× 10−6 2.26055× 10−8

60 9.50755× 10−7 9.78260× 10−7 1.30823× 10−8

70 6.99957× 10−7 7.17278× 10−7 8.23860× 10−9

80 5.36733× 10−7 5.48337× 10−7 5.51930× 10−9

90 4.24595× 10−7 4.32745× 10−7 3.87641× 10−9

100 3.44252× 10−7 3.50193× 10−7 2.82592× 10−9

500 1.38651× 10−8 1.39127× 10−8 2.26080× 10−11

1000 3.46925× 10−9 3.47519× 10−9 2.82600× 10−12

5000 1.38865× 10−10 1.38913× 10−10 2.26080× 10−14

10000 3.47193× 10−11 3.47252× 10−11 2.82600× 10−15

Table 1: Numerically compared errors for constant corrections: eq. (2), eq. (3) and eq. (7).
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Figure 2: Proposed approximations and their absolute relative error to n!.
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n eq. (7) eq. (8) eq. (9) eq. (10)

1 0.00232 0.00031 0.00050 0.00023
10 2.81813× 10−6 4.75012× 10−9 7.87352× 10−9 1.91489× 10−11

20 3.53003× 10−7 5.15163× 10−10 2.47478× 10−10 1.35261× 10−13

30 1.04634× 10−7 1.16269× 10−10 3.26261× 10−11 2.48111× 10−14

40 4.41486× 10−8 3.90880× 10−11 7.74545× 10−12 5.57148× 10−15

50 2.26055× 10−8 1.65760× 10−11 2.53852× 10−12 1.64257× 10−15

60 1.30823× 10−8 8.17576× 10−12 1.02028× 10−12 5.90763× 10−16

70 8.23860× 10−9 4.48322× 10−12 4.72080× 10−13 2.45804× 10−16

80 5.51930× 10−9 2.65882× 10−12 2.42145× 10−13 1.14196× 10−16

90 3.87641× 10−9 1.67487× 10−12 1.34377× 10−13 5.78184× 10−17

100 2.82592× 10−9 1.10674× 10−12 7.93503× 10−14 3.13602× 10−17

500 2.26080× 10−11 1.86136× 10−15 2.53949× 10−17 2.29887× 10−21

1000 2.82600× 10−12 1.17043× 10−16 7.93596× 10−19 3.64898× 10−23

5000 2.26080× 10−14 1.88174× 10−19 2.53952× 10−22 2.36453× 10−27

10000 2.82600× 10−15 1.17679× 10−20 7.93600× 10−24 3.70028× 10−29

Table 2: Numerically compared errors for the proposed approximations.

to n!. Solving explicitly, one finds n ≈ 5.88037 for eq. (8), and n ≈ 0.311977, n ≈ 1.21606,
and n ≈ 15.2894 for eq. (10).

While fig. 2 and table 2 show encouraging results, we will now compare our proposed
approximations to known, and oft-cited, approximations. The approximation retained are of
comparable computational complexity. We will compare:

• The truncated Stirling series (often ambiguously referred to as “Stirling’s Approxima-
tion”),

n! ∼
√
2πn

(n
e

)n
, (11)

• Burnside’s approximation [2],

n! ∼
√
2π

(
n+ 1

2

e

)n+ 1
2

, (12)

• Gosper’s [5],

n! ∼
√
π

√
2n+

1

3

(n
e

)n
, (13)

• Mohanty’s and Rummens’ [9],

n! ∼
√
2π(n+ 1)n+

1
2 e

1
12(n+1)

−(n+1), (14)

• Mortici’s [10],

n! ∼
√

2π

e

(
n+ 1

e

)n+ 1
2

, (15)

• and Nemes’ [13],

n! ∼
√
2πn

(n
e

)n(
1 +

1

12n2 − 1
10

)n
. (16)
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Figure 3: Absolute relative error of proposed approximations compared to other approxima-
tions to n!.

Stirling Mortici Burnside Gosper M & R
n eq. (11) eq. (15) eq. (12) eq. (13) eq. (14) eq. (7)
1 0.07786 0.04050 0.02751 0.00398 0.00033 0.00232284
10 0.00830 0.00755 0.00397 0.00007 2.08209× 10−6 2.81813× 10−6

20 0.00416 0.00396 0.00203 0.00002 2.99750× 10−7 3.53003× 10−7

30 0.00277 0.00268 0.00137 7.58471× 10−6 9.32145× 10−8 1.04634× 10−7

40 0.00208 0.00203 0.00103 4.28485× 10−6 4.02969× 10−8 4.41486× 10−8

50 0.00167 0.00163 0.00083 2.74940× 10−6 2.09382× 10−8 2.26055× 10−8

60 0.00139 0.00137 0.00069 1.91259× 10−6 1.22370× 10−8 1.30823× 10−8

70 0.00119 0.00117 0.00059 1.40689× 10−6 7.76065× 10−9 8.23860× 10−9

80 0.00104 0.00103 0.00052 1.07814× 10−6 5.22665× 10−9 5.51930× 10−9

90 0.00093 0.00092 0.00046 8.52471× 10−7 3.68603× 10−9 3.87641× 10−9

100 0.00083 0.00082 0.00041 6.90896× 10−7 2.69601× 10−9 2.82592× 10−9

500 0.00017 0.00017 0.00008 2.77494× 10−8 2.20894× 10−11 2.26080× 10−11

1000 0.00008 0.00008 0.00004 6.94090× 10−9 2.76946× 10−12 2.82600× 10−12

5000 0.00002 0.00002 8.33253× 10−6 2.77749× 10−10 2.22089× 10−14 2.26080× 10−14

10000 8.33330× 10−6 8.33247× 10−6 4.16647× 10−6 6.94409× 10−11 2.77694× 10−15 2.82600× 10−15

Table 3: All approximations compared, absolute relative error, first part.
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Figure 4: Absolute relative error of proposed approximations compared to other approxima-
tions to n!.

Fig. 3 and table 3 present the relative errors of our proposed approximation, eq. (7),
against those from Burnside, Mortici, and Gosper. From table 3, we see that Mortici’s
approximation, eq. (15), does marginally better than Stirling’s truncated series, eq. (11).
Burnside’s approximation has a relative error approximately half of the truncated Stirling
series, eq. (11). Compared to the other results, one can see that Burnside’s approximation
is of historical interest at best. Gosper’s approximation fares much better, but still worse
than Mohanty’s and Rummens’. Mohanty’s and Rummens’ approximation does better than
eq. (7), but just so.

Fig. 4 presents the relative absolute errors of our proposed approximations against
Nemes’, eq. (16), and Mohanty’s and Rummens’, eq. (14). Note that Nemes’ approximation
and eq. (9) overlap on the figure, but Nemes’ does better as detailed in table 4. Table 4
presents the same results, but this time including Stirling’s series, eq. (1), with its first ten
terms. Nemes’ approximation does better than eq. (9), but eq. (10) does much better than
either, while the ten term Stirling series shows errors tens of orders of magnitude smaller.

Another interesting measure of accuracy is the number of correct leading digits, shown
in table 5. Indeed, an approximation is “perfect” if it gives as many correct digits as the
number representation is capable of storing, since any additional correct digits will be lost
to quantization. If one uses single-precision IEEE 754 floating point numbers, one expects
about 7 significant digits, because its mantissa is 24 bits long (of which only 23 are explicitly
stored [21]), and we have log10 224 ≈ 7.22. With double-precision floating point, the mantissa
is 53 bits long, and we expect log10 253 ≈ 15.95, or about 16, significant digits. At 7 significant
digits, eqs. (8) to (10), as well as eq. (16), are basically equivalent in terms of accuracy. With
16 digits, only eq. (10) is cromulent.
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Nemes Stirling
n eq. (7) eq. (8) eq. (9) eq. (10) eq. (16) eq. (1)*

1 0.00232284 0.000311662 0.000501953 0.000234244 0.000372486 0.000467142

10 2.81813 × 10−6 4.75012 × 10−9 7.87352 × 10−9 1.91489 × 10−11 6.47042 × 10−9 1.13891 × 10−14

20 3.53003 × 10−7 5.15163 × 10−10 2.47478 × 10−10 1.35261 × 10−13 2.03553 × 10−10 2.26443 × 10−18

30 1.04634 × 10−7 1.16269 × 10−10 3.26261 × 10−11 2.48111 × 10−14 2.68387 × 10−11 1.40009 × 10−20

40 4.41486 × 10−8 3.90880 × 10−11 7.74545 × 10−12 5.57148 × 10−15 6.37174 × 10−12 2.30179 × 10−21

50 2.26055 × 10−8 1.65760 × 10−11 2.53852 × 10−12 1.64257 × 10−15 2.08831 × 10−12 3.44988 × 10−22

60 1.30823 × 10−8 8.17576 × 10−12 1.02028 × 10−12 5.90763 × 10−16 8.39339 × 10−13 6.62692 × 10−23

70 8.23860 × 10−9 4.48322 × 10−12 4.72080 × 10−13 2.45804 × 10−16 3.88358 × 10−13 1.58004 × 10−23

80 5.51930 × 10−9 2.65882 × 10−12 2.42145 × 10−13 1.14196 × 10−16 1.99201 × 10−13 4.47552 × 10−24

90 3.87641 × 10−9 1.67487 × 10−12 1.34377 × 10−13 5.78184 × 10−17 1.10546 × 10−13 1.45461 × 10−24

100 2.82592 × 10−9 1.10674 × 10−12 7.93503 × 10−14 3.13602 × 10−17 6.52774 × 10−14 5.28507 × 10−25

500 2.26080 × 10−11 1.86136 × 10−15 2.53949 × 10−17 2.29887 × 10−21 2.08906 × 10−17 6.98451 × 10−32

1000 2.82600 × 10−12 1.17043 × 10−16 7.93596 × 10−19 3.64898 × 10−23 6.52832 × 10−19 7.01285 × 10−35

5000 2.26080 × 10−14 1.88174 × 10−19 2.53952 × 10−22 2.36453 × 10−27 2.08907 × 10−22 7.33848 × 10−42

10000 2.82600 × 10−15 1.17679 × 10−20 7.93600 × 10−24 3.70028 × 10−29 6.52833 × 10−24 7.18569 × 10−45

Table 4: All approximations compared, absolute relative error, second part. *With the first
ten terms.

Stirling Gosper M & R Nemes Stirling
n n! eq. (11) eq. (13) eq. (14) eq. (7) eq. (8) eq. (9) eq. (10) eq. (16) eq. (1)*
1 1 0 0 0 0 0 0 0 0 0
10 7 1 4 6 5 6 6 6 6 6
20 19 2 4 7 7 9 9 13 9 18
30 33 2 5 7 7 10 10 13 10 20
40 48 2 5 6 6 10 11 14 11 20
50 65 2 6 8 8 10 11 15 11 21
60 82 2 5 7 7 10 11 14 11 21
70 101 3 6 8 8 9 13 15 13 23
80 119 2 5 8 8 11 12 14 12 23
90 139 3 6 9 8 12 13 17 13 24
100 158 2 5 8 8 10 12 15 12 23
500 1135 2 7 9 9 15 17 19 17 30
1000 2568 4 7 11 11 15 18 21 18 34
5000 16326 5 9 13 13 19 19 25 21 41
10000 35660 5 10 14 14 20 22 28 22 43

Table 5: Number of correct leading digits for different approximations. The column with n!
shows the number of digits in n!. *With the first 10 terms.
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5 Implementation and Computational Complexity
To be interesting, an approximation formula must, in addition of being accurate, be easily
and efficiently computed. Some of the approximations we used for comparison raise the
correction term to the n-th (or (n+ 1

2
)-th) power, possibly requiring both raising to the n-th

power and extracting a square root. If we have n ∈ N, we can evaluate the exponentiation
in O(log n) steps using the successive squaring method (an old idea, see [3, p. 76] and [15]),
but this seems too restrictive, as we will want n ∈ R. Rational functions of degree d, on the
other hand, can be evaluated in O(d) products, whether n is a natural or a real number,
and independently of its magnitude—although it will become costlier when n grows if exact
arithmetic is used.

Eqs. (7) to (10) are best evaluated using reduced rational functions in order to minimize
the number of multiplications and divisions required. The correction term of eq. (7) can be
rewritten in many ways,

1 +
1

12n− 1
2

=
12n+ 1

2

12n− 1
2

=
24n+ 1

24n− 1
= 1 +

2

24n− 1
. (17)

Eq. (8) is probably best expressed as eq. (8b), resulting in three products and one division,
while eq. (8a) needs two products and two divisions, a gain if we consider the divisions to
be much more expensive than products. For eq. (9), we find that, expressed as eq. (9a), the
correction term requires five products and two divisions. Expressed as eq. (9b), we notice
that if we let t = n2, we can rewrite the correction term as

17280t+ 720n− 556

207360tn+ 571
,

which now requires the same number of products, but with only one division. If we apply
the same type of simplification to eq. (10b), again with t = n2, we find that

1451520n3 + 60480n2 − 46704n− 3997

17418240n4 − 163879
=

(1451520n+ 60480)t− 46704n− 3997

17418240t2 − 163879

can now be evaluated with six products and one division instead of ten products and
two divisions in its original form, eq. (10a). As the degree d grows, the resulting rational
functions may be subject to other optimization strategies [1, 12], but the evaluation will
require, at worse, O(d) multiplications, if only by using Horner’s method for evaluating
polynomials [7, 14].

6 Conclusion
Hodgman’s correction to eq. (2), eq. (3), lead us to the observation that since these functions
can be seen as two special cases of a continuous function, by the intermediate value theorem,
there must be a correction for which the error is zero, that is, there must exist a function
α(d, n) in eq. (4) that yields n! exactly. From this observation, we proposed a novel family of
approximations, each approximation being the optimal rational function α(d, n) of degree d

10



in n. We then solved exactly for a few special cases, first for α(0, n), a constant, then for small
degrees 1 6 d 6 3. In doing so, we showed that α = −1

2
is the optimal constant correction.

We also showed the rational functions of small degrees fare quite well compared to oft-cited
approximations for n!. We remarked that if the special case α(2, n) is quite comparable to
Nemes’ approximation, with the latter being a still better; α(3, n) is at least three orders
of magnitude better than any of the other approximation used for comparison. Lastly, we
discussed computational complexity for the correction term, remarking that our solutions
based on rational functions of (small) degree d will require at most O(d) products and one
division, while many of the other approximations will require O(log n) products, or require
exponentiation by an arbitrary number, making our proposal also attractive computation-
wise.

References
[1] E. G. Belaga. On Computing Polynomials in One Variable with Initial Preconditioning

of the Coefficients. Problemi Kibernetiki, 5:7–15, 1961. In Russian, with original title:
О вычислений значений многочленов от одного переменного с предварительной
обработкой коэффициентов.

[2] William Burnside. A Rapidly Convergent Series for logN !. Messenger of Mathematics,
46:157–159, 1917.

[3] Bibhutibhusan Datta and Avadhesh Narayan Singh. History of Hindu Mathematics: A
Source Book, Part I. Motilal Barnasi Das, 1935.

[4] Steven A. Feller and Joseph E. Kasper. How Good are the Common Approximations
used in Physics? American Journal of Physics, 50(8):682–683, 1982.

[5] R. William Gosper, Jr. Decision Procedure for Indefinite Hypergeometric Summation.
Procs. Nat. Acad. Science USA, 75(1):40–42, 1978.

[6] Charles D. Hodgman, editor. CRC Standard Mathematical Tables. Chemical Rubber
Publishing Company, 10th edition, 1955.

[7] W. G. Horner. A New Method of Solving Numerical Equations of All Orders, by
Continuous Approximations. Philosophical Transactions of the Royal Society of London,
109:308–335, 1819.

[8] Dawei Lu. A New Sharp Approximation for the Gamma Function Related to Burnside’s
Formula. The Ramanujan Journal, 35(1):121–129, 2014.

[9] S. Mohanty and Frans H. A. Rummens. Comment on: “An Improved Analytical
Approximation to n!”. J. of Chemical Physics, 80(1):591, 1984.

[10] Cristinel Mortici. On Gosper’s Formula to the Gamma Function. J. of Mathematical
Inequalities, 5(4):611–614, 2011.

11



[11] Cristinel Mortici. A Continued Fraction Approximation of the Gamma Function. J. of
Mathematical Analysis and Applications, 402(2):405–410, 2013.

[12] Ian Munro and Michael Paterson. Optimal Algorithms for Parallel Polynomial
Evaluation. J. of Computer and System Sciences, 7(2):189–198, April 1973.
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