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Abstract—Multimedia Messaging Services (MMS) allow users
with heterogeneous terminals to exchange structured messages
composed of text, images, sound, and video. The MMS market
grows rapidly, posing the problem of MMS adaptation, necessary
to ensure interoperability between terminals. Message adaptation
poses technological challenges, especially when one considers
the case of high-volume service providing. In this work, we
propose novel predictor-based dynamic programming approaches
to MMS adaptation, explicitly maximizing user experience,
rather than relying on heuristics to deliver satisfactorily adapted
messages. We show that the proposed solutions lead to noticeably
superior image quality with faster transcoding times than
comparative algorithms inspired by what is found in actual
products and in the literature.

Index Terms—MMS, image adaptation, JPEG, optimization, predic-
tor, dynamic programming, SSIM.

I. I NTRODUCTION

Multimedia Messaging Services (MMS) allow users with
heterogeneous terminals to exchange structured messages
composed of text, audio, still image, and video [1]. MMS traf-
fic will likely grow very rapidly in the next few years, pro-
viding both business opportunities and technological chal-
lenges [2]. As MMS usage grows and standards evolve,
providers are pressed to manipulate ever greater num-
bers of messages with richer media, but this daunting task can-
not be reduced to mere message-passing as server-side adap-
tation of messages is necessary to ensure interoperabil-
ity amongst users [3]. The very high volume of messages to
be manipulated by service providers will ask for the most ef-
ficient adaptation algorithms and strategies to cope with de-
mand, growth, evolution of standards, and to mitigate scal-
ing problems.

For MMS applications, a receiving terminal is character-
ized by its capabilities—or maybe more accurately by itslim-
itations—as defined byprofiles. A profile determines the ter-
minal’s set of constraints, such as the maximum multime-
dia message size in bytes, the media types that the termi-
nal can interpret as well as the specific constraints of indi-
vidual media types such as maximum image size or maxi-
mum bit-rate [1]. A device supporting the “Image Rich” pro-
file will support various still image formats, images with res-
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olutions up to640×480 pixels, and a maximum message size
of 100 KB.

Server-side adaptation will ensure that not only each indi-
vidual multimedia attachment is compatible with the receiv-
ing terminal but also that the message as a whole can be sent
and correctly interpreted. Each attachment is to be character-
ized and transformed, if need be, to satisfy the receiving ter-
minal’s constraints, whether by adjusting its format, resolu-
tion, or bit-rate. In the absence of server-side adaptation, a
message exceeding the terminal capabilities (either by mes-
sage size or media type) can result in terminal-specific be-
havior that ranges from merely incomplete messages to ter-
minal crash. If the server is capable of determining the capa-
bilities of the terminal but incapable or unwilling to perform
adaptation, it can revert to alternate strategies such as send-
ing a text-only SMS (Short Message Service) with the lo-
cation of the original message for the user to download or
browse by other means [4]. While this ensures delivery of con-
tent, it does not provide the user with a satisfactory experi-
ence, hinting that server-side adaptation is preferable from the
users’ point of view.

Multimedia message adaptation, however, is not a trivial
task as it does not suffice to apply heuristics such as succes-
sively reducing the bit-rate, or successively reducing theres-
olution of the various message attachments until a message
satisfying the receiving terminal’s various constraints is pro-
duced to yield satisfactory results. We have shown, in previ-
ous work, that strategies using joint adaptation of compres-
sion parameters and scaling produced significantly better re-
sults than using either alone [5]. In this work, we propose
to extend these ideas to the explicit optimization of compres-
sion parameters and scaling over a complete image-only mes-
sage in order to achieve an adaptation that not only satis-
fies the receiving device constraints but also maximizes over-
all perceived quality, and therefore, we expect, maximizesuser
experience. While the techniques proposed in this work can
be applied to any type of images, and to any media in gen-
eral, we will, however, without loss of generality, restrict our-
selves to the case of JPEG images, as most of the traffic is
now composed of images from camera phones in JPEG for-
mat.

A priori, adapting a single JPEG image to fit given con-
straints appears as a trivial task, but JPEG adaptation is infact
a costly process, especially when one considers the high vol-
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umes of images to manipulate in the context of server-side
services. Of course, solutions have been proposed to speed
up transcoding under constraints such as maximum file size
and maximum resolution. Some solutions address the prob-
lem of estimating the transcoded file size of a single JPEG im-
age but are still computationally intensive (in addition tone-
cessitating extensive modifications in the existing JPEG soft-
ware libraries) or overly rigid, for example, considering only
scalings by power of two because they can be performed ef-
ficiently in the transform (DCT) domain [6]–[8]. Other solu-
tions for image transcoding were proposed in the broader con-
text of web or low-bandwidth resource access, and if some so-
lutions are designed to transcode an image so that it fits the
constraints while minimizing transcoding time [9], others use
a small number of fixed transcoding profiles setting both com-
pression parameters and maximum image resolution to achieve
adaptation [10]; neither quite expressing the problem in terms
of explicit maximization of resulting image quality or userex-
perience. More complex adaptation approaches, based on the
understanding of message contents and image points of inter-
est were also proposed [11], [12], but, while promising, these
techniques may be too computationally expensive for the type
of high-volume transcoding needed by multimedia messag-
ing service providers [2].

Therefore, adapting an image, even in JPEG format, against
maximum file size and resolution while maximizing perceived
quality in a computationally efficient manner remains a chal-
lenge as there are no established methods to estimate the re-
sulting file size and quality of an image subject to changes in
compression parameters and resolution. To this end, we have
proposed, in previous work, predictors and systems to adapt
images and messages [5], [13], [14]. In this work, we ex-
tend these systems and a previous work [15] to the adapta-
tion of messages against receiving terminal constraints com-
posed of multiple images using optimization algorithms max-
imizing explicitly perceived quality of the resulting messages.
However, optimizing adaptation exactly is a very costly pro-
cess and, to speed it up significantly, we propose to use predic-
tors. In particular, we will reuse the predictor presented in [5],
hereafter denoted JQSP (for JPEG Quality and Size Predic-
tor). We will further show that not only the proposed methods
yield better perceived quality than approaches found in, and in-
spired by, prior art, but also that the transcoding times aresig-
nificantly lower.

The work is organized as follows. SectionII lays out the
basic definitions, details the problem space, and presents the
proposed solutions. SectionIII describes the test methodology,
the predictors, and algorithms used for comparison. The test
results of the proposed algorithms under various conditions are
presented in sectionIV, and discussed in sectionV. Finally,
sectionVI concludes the present work.

II. PROPOSEDSOLUTION

Measuring perceived visual quality of images subject to
transformations is a difficult task. The peak signal-to-noise
ratio (PSNR) have been used in literature as an estimate of
perceived quality but have been shown to be poorly correlated

with perceived quality [16], in addition of being intolerant
of transformations such as translation, scaling, and contrast—
none of which automatically translates into a degradation of
quality to a human observer. For the purpose of estimating the
resulting quality, we will use the structural similarity index
(SSIM) proposed by Wanget al. which exhibits tolerance
to moderate transformations, while being better correlated to
mean opinion scores (MOS) [17]. The SSIM is essentially
a windowed correlation factor between original and distorted
images and, as such, yields results on[−1, 1], but for our
application we will constrain the measure on[0, 1], with any
negative values mapped onto 0. Constraining the SSIM on
[0, 1] allows us to use the objective function

Q(M,T ) =

n∏

i=1

Q (mi, T (mi, ti)) , (1)

where M={p ; m1,m2, . . . ,mn} is the message to be
adapted, with presentationp and composed of then im-
ages mi, with resolutions R(mi)=(wi, hi), and where
T ={t1, t2, . . . , tn} is the series of transcoding parame-
ters to be applied to the images. The transcoding parame-
ters ti = (qi, zi) are such that06qi6100 is the output qual-
ity factor (using the semantics proposed by the IJG [18]) and
0<zi61 a scaling factor used to resize the image. The func-
tion T (mi, ti), the transcoding function, applies transcod-
ing parametersti on imagemi yielding an image with res-
olution zR(mi)=(ziwi, zihi) compressed with quality fac-
tor qi.

Lastly, 06Q (mi, T (mi, ti))61 compares the original im-
agemi to its transcoded versionT (mi, ti) using SSIM, as pre-
viously discussed. Since the imagesmi andT (mi, ti) may dif-
fer in resolution, that is, wheneverz 6=1, the imageT (mi, ti)
is rescaled to the original resolutionR(mi) before compar-
ison [5]. In all cases, the image scaling is performed us-
ing a Blackman filter, chosen because of its spectral prop-
erties [19].

Eq. (1), as a measure of the quality of the transcoded mes-
sage, is to be maximized by a transcoding operation series
T under the constraints of a deviceD. The first constraint is
that the total size of the transcoded images (plus the presen-
tation meta-data) does not exceed the maximum size allowed
for a message by the device. The second constraint is a res-
olution constraint, where all the images must have a resolu-
tion inferior or equal to the device’s maximum resolution.

The size constraint is expressed by
n∑

i=1

S (T (mi, ti)) 6 S(D)− P (M,D) , (2)

whereS (T (mi, ti)) is the file size in bytes of the transcoded
imageT (mi, ti), S(D) the maximum message size in bytes
for device D, and P (M,D) is the size, also in bytes, of
the presentation (headers, markup, etc.) necessary for the
adapted messageM to display correctly on deviceD. The
left-hand side of eq. (2) determine thecapacity, the portion
of the allowable byte budget used by the message using
transcoding parameter seriesT . Let us also note that we do
not interest ourselves in the quantityP (M,D), the amount
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of bytes necessary for the presentation of messageM on
deviceD, which would require adaptation of the presentation
to estimate correctly. It is rather supposed to be a small,
essentially negligible, part of the message budget.

The image resolution constraints for messageM and de-
vice D are given by the orientation-independent resolution
constraints

zi max(wi, hi) 6 max(wD, hD) ,

zi min(wi, hi) 6 min(wD, hD) .
(3)

where (wD, hD) is R(D), the receiving device’s maximum
image resolution, which is independent of the device’s actual
screen resolution. We therefore suppose that the receiving
device scales and rotates the pictures on screen for best
viewing conditions.

The optimal series of transcodingT ∗ for a messageM and
a deviceD is therefore given by

T ∗ = arg max
T∈T (M,D)

Q(M,T ) , (4)

where T is the set of all possible series of transcoding
parameters satisfying the constraints of eq. (2) and eqs. (3).
The cardinality ofT (M,D) can be very large (even infinite)
if we do not constrain the transcoding parameters to a
rather small set of discrete values to avoid the combinatorial
explosion of the number of states the algorithm solving eq. (4)
examines. The quality factor, as defined by the IJG, is an
integer taking values from 0 to 100, inclusive, but the scaling
factor is a real, or at the very least rational, number and
can therefore take an infinite number of values on]0, 1]. To
solve this problem, in previous work [5], [13], [14], we have
constrained both transcoding parameters to take at most ten
distinct values, that is, quality factors were limited to the
set {10, 20, . . . , 100}, and scalings to{0.1, 0.2, . . . , 1}, thus
limiting the number of possible transcodings to 100. We will
use the same values for the present work’s experiments.

The objective function eq. (1) presents only one of the
possible measures of overall message quality; however, several
aspects make it especially suitable for the task considered.
While maximizing eq. (1) is not the same as maximizing the
average quality of the transcoded images, the expected average
quality necessarily increases with increases of eq. (1), as a
consequence of

n∏

i=1

Q (mi, T (mi, ti)) 6 min
{
Q (mi, T (mi, ti))

}n
i=1

,

where{xi}
n
i=1 denotes the sequence{x1, . . . , xn}. The nature

of Q will furthermore cause the maximization of eq. (1)
to reduce its variance [20]–[22]. Therefore, maximizing the
proposed objective function will have the side effects of
finding solutions with higher expected average quality and
lower variance. Lower variance is especially interesting as it
translate into reducing the risk of finding solutions were one
transcoded image is of very poor quality while all the others
are of good quality, rather than finding solutions where quality
is balanced between all images.

The objective function eq. (1) is convex and separable, mak-

ing it a Bellman equation [23], and thus amenable to effi-
cient optimization using dynamic programming. More specif-
ically, the optimization problem considered in eq. (4) is a dis-
tribution of effortproblem, where a finite quantity of resources
are allocated strategically in order to maximize a gain func-
tion [23], [24]. For the current problem, the resources are
transcoded file sizes whose sum is constrained by the maxi-
mum message size as stated in eq. (2); the gain from allocation
is the quality obtained as determined by the objective func-
tion, eq. (1); under the additional constraints of maximum res-
olution, as given by eqs. (3). This general class of problem
was studied extensively and there exist efficient polynomial-
time algorithms to find which allocation of resource maxi-
mizes the objective function under the given constraints [24],
[25].

Solving eq. (4) exactly is possible, but would require for all
transcoding parameters examined by the algorithm that an ac-
tual transcoding is performed to measure resulting file size
and quality, clearly a prohibitive process. But rather thanper-
forming a transcoding for every combination of transcoding
parameters examined, we will resort to fast predictors that,
given a (superficial) characterization of an imagem (such as
original file size, quality factor, and resolution) and transcod-
ing parameterst, will predict the resulting file size and qual-
ity of T (m, t), the transcoded imagem to which were ap-
plied transcoding parameterst.

We have presented such predictors in previous works [5],
[13] and in this study, we will use the file size and quality pre-
dictor presented in [5], which will be denoted JQSP, the JPEG
Quality and Size Predictor. To assess the proposed methods’
resilience to prediction error, we will, in addition to JQSP, use
oracular predictors, predictors with known characteristics, dis-
cussed in the next section, sectionIII .

The objective function using predictors is rewritten as

Q̂(M,T ) =

n∏

i=1

Q̂(mi, ti) , (5)

whereQ̂(mi, ti) is the quality predictor taking an imagemi

(or more exactly, its characterization composed of its original
quality factor, file size, and resolution) and a transcoding
operationti, rather than usingQ(mi, T (mi, ti)) that compares
the actual transcoded imageT (mi, ti) with the original image
mi.

The size constraint must also be modified to accommodate
predictors. The size constraint eq. (2) is rewritten as

n∑

i=1

Ŝ(mi, ti) 6 S(D)− P (M,D) , (6)

whereŜ(mi, ti) denotes the predictor of the size of imagemi

on which were applied the transcoding parametersti. Eqs. (3),
however, is unchanged as resolution remains a deterministic
function of zi and R(mi), and therefore contains no uncer-
tainty.

The optimal predicted transcodinĝT ∗ is given by

T̂ ∗ = arg max
T̂∈T̂ (M,D)

Q̂(M, T̂ ) , (7)



4

where theT̂ are series of transcoding parameters drawn from
the setT̂ (M,D) of all series of transcoding parameters on
messageM that (probably) satisfy constraints eqs. (3) and
eq. (6) of the deviceD.

To summarize, we formulate the problem of adapting image-
only MMS as a distribution of effort problem amenable to
dynamic programming. We further propose to reduce the
complexity of the problem by replacing actual transcodingsby
size and quality predictors in order to perform the optimization
efficiently. The next section discusses the generation of the
set T̂ (M,D), the series of transcodings on messageM that
(probably) satisfy the constraints of the deviceD. We will also
present the details of the proposed optimization algorithms and
the details of the two comparison algorithms.

III. T RANSCODINGALGORITHMS

The JQSP (for JPEG Quality and Size Predictor) introduced
in [5] differs from the predictor introduced in [13] as it
does not directly predict file sizes and quality from an image
characterization and a transcoding operation but rather predicts
transcoding parameters and resulting quality from an image
characterization and a target file size. Either predictors can
be used to create a set̂T (M,D) for a messageM and
receiving deviceD, but in this work, as we mentioned earlier,
we will use the JQSP. The JQSP predictor was trained on
approximately 70 000 JPEG images gathered from the Internet,
using a web crawler starting at various popular sites in
2008 [13]. The density of the JQSP predictions was adjusted
so that target file sizes were set 5% apart, thus limiting the
size of T̂ (M,D) for optimization.

Proposing optimization methods based on a specific predic-
tor such as the JQSP validate the predictor more than it val-
idates the methods themselves. In order to show the prop-
erties of the proposed methods such as resilience to predic-
tor error and ultimately determine the upper-bound on attain-
able quality, we will useoracular predictors. The oracular pre-
dictor “predicts” the exact file size and quality resulting from
transcoding parameters applied to an image by actually per-
forming the transcoding corresponding to the transcoding pa-
rameters. To further demonstrate that the proposed methods
are resilient, that is, degrade gracefully in the presence of in-
creasing errors in the predictors, we will use predictors de-
rived from the oracular predictor with relative gaussian er-
ror on file size and quality of 1%, 2%, 5% and 10%, 95% of
the time. To populatêT (M,D) using the oracular predictors,
the transcoding parameters were limited to quality factorsof
{10, 20, . . . , 100} and scalings of{0.1, 0.2, . . . , 1.0}, thus lim-
iting the number of transcoding parameters to at most one hun-
dred per image. Let us now expose the details of our two pro-
posed solutions to the problem of adaptation of JPEG-only
messages, followed by the two comparison methods.

A. Dynamic Programming

The first proposed method, hereafter referred to as simply
“dynamic programming”, is to solve eq. (7) directly by dy-
namic programming to obtain the predicted optimal transcod-
ing parameters series. The optimal transcoding parameters

found by explicit optimization are then used to perform mes-
sage adaptation. If the adaptation yields a message larger than
the maximum message size for the receiving device due to size
prediction error—it cannot yield a message with images of in-
compatible resolutions—a new, smaller, maximum message
size is set for the device and adaptation is retried. The maxi-
mum message size is adjusted by a factorα1 (set to0.95 in our
experiments) at each iteration, that is, we rewrite the sizecon-
straint eq. (6) as

n∑

i=1

Ŝ(mi, ti) 6 αk−1
1 S(D)− P (M,D) (8)

for thekth iteration; at the first iteration,k = 1, the constraint
is equivalent to eq. (6).

B. Step Dynamic Programming

However, as we will discuss further in sectionV, the exper-
iments show that using dynamic programming as described
above, prediction error cumulate rather than cancel out—
especially when the predictor is biased. The second proposed
method, that we will refer to as “step dynamic programming”
mitigates error propagation by proceeding by iterative refine-
ment of the solution, again based on dynamic programming.
Step dynamic programming will first optimize the message
globally and determine the predicted optimal transcoding pa-
rameters series, but will transcode only the first image (in at-
tachment order). After the first image is transcoded, its ac-
tual file size is observed and the budget for the remaining im-
ages is readjusted to take into account the transcoded image—
and the corresponding prediction error. The remaining images
are optimized jointly and, again, only the first of the remain-
ing images is transcoded, its transcoded size observed, and
budget readjusted. That is, eq. (8) becomes

s−1∑

i=1

S(T (mi, t
∗

i )) +

n∑

i=s

Ŝ(mi, ti) 6 αk−1
1 S(D)− P (M,D)

at steps (with s = 2, 3, . . . , n− 1, at s = 1, we use eq. (8))
of thekth (with k>1) iteration. Thet∗i denote the transcoding
parameter already chosen (but not necessarily optimal in an
absolute sense). The next step of optimization proceeds by
solving the modified objective function on the lastn−s

terms, corresponding to the images yet to be transcoded. The
objective function eq. (5), at steps = 2, 3, . . . , n− 1, becomes

Q̂s(M,T ) =

(
s−1∏

i=1

Q (mi, T (mi, t
∗

i ))

)(
n∏

i=s

Q̂(mi, ti)

)
,

(9)
where the left part corresponds to images already transcoded
(and therefore with known quality—which we do not neces-
sarily need to observe) and the right part correspond to the ob-
jective function to maximize.

Readjusting budget and re-optimizing at each transcoded
image greatly reduces the propagation of prediction errors,
with the consequence that, as we will see in sectionIV, the
algorithm makes better use of capacity.
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TABLE I
COMBINATION OF RESOLUTION AND QUALITY FACTORS FORMING THE

PROFILES USED FOR ALGORITHM“ SUCCESSIVE PROFILES.”

Resolution Quality Factors

640×480 90, 80, 70, 60
320×240 90, 80, ..., 50
160×120 90, 80, ..., 40

C. Comparative Algorithms

To compare the two proposed and novel solutions, we will
use two algorithms inspired by the fixed profiles adaptation
strategy of Mohanet al. [10]. The first comparative algorithm,
“successive profiles,” will apply successively more restrictive
profiles to all images until the transcoded message satisfies
the receiving device constraints. For this algorithm, aprofile
defines both quality factor and maximum resolution. For
example, a profile could limit the resolution to640×480
with a quality factor of 90. The next profile could use the
same resolution but a quality factor of 80, the next could
reduce the resolution to320×240 but keep a quality factor of
80, and so on; each successive profile being more restrictive
than the preceding, reducing resolution, quality factor, or
both. The number and determination of useful profiles in this
context depends on the performance objectives one expects.
The profiles used for our experiments are shown in TableI.
However, we will see in the next section that it is not useful
to merly have a great number of profiles.

The second comparative algorithm, “successive scaling,”
will adjust only the images’ scalings while using a fixed, but
reasonable, quality factor of 85. Starting at the maximum res-
olution allowable for the receiving device, the algorithm will
successively scale down all images (using the fixed quality
factor) until the adapted message satisfies the device con-
straints. For each imagemi, the largest allowable scaling fac-
tor 0<zi61 such thatziR(mi)6R(D) is found. Adaptation
proceeds by adjusting, at iterationk = 1, 2, . . . a global pa-
rameterβk (initially β1 = 1) that is applied to every image so
that the scaling factor of imagemi at stepk is βkzi, yield-
ing an image of resolutionβkziR(mi). As scaling controls
quadratically the file size (a scalingz yields an image of rel-
ative surfacez2), a reasonable adjustmentβk+1 (for k>1) is
given by

βk+1 = α2

√
S(D)− P (M,D)

Sk

,

whereα2 is a dampening factor (set to0.95 for our experimen-
tation) to ensure that the budget is reduced further at each itera-
tion, as well as limit the number of iterations,S(D) is the max-
imum message size for the receiving deviceD, P (M,D) is
the size of the presentation of messageM on deviceD, and
Sk is the size of the message obtained at stepk. The adap-
tation terminates when a message satisfying the device con-
straints is produced.

Both comparative algorithms try to heuristically maintain
a reasonable balance between image scaling and quality
factors—one through the predefined profiles and the other by

using a fixed but relatively high quality factor while adjusting
only resolution—in order to provide better image quality.
One could also think of an algorithm where the images are
reduced toR(D), the maximum resolution for the receiving
device and where further adaptation is achieved only by
using successively coarser quality factors until the message
satisfies the receiving device constraints. That strategy would,
however, lead to the undesirable result of relatively high
resolution images compressed with very low quality factors,
thus exhibiting conspicuous blocking artifacts. This algorithm
would likely produce worse results than either of the proposed
comparative algorithms, and as such is not very interesting.

IV. RESULTS

For the experiments, we created four groups of 1000
MMS, with two (a minimum for “multipart”) to five attached
images. The images with resolutions between320×200 and
3000×2000 were randomly chosen from a database of 370 000
images obtained by crawling the web in the fall of 2010 [15],
rather than the database from previous works from [5], [13].
The profile chosen to test adaptation in our experiments
is “Image Rich” (supporting images with resolutions up to
640×480 and a maximal message size of 100 KB). Forcing
messages to “Image Rich” from the original MMS (whose
average message size of 284 KB, 563 KB, 790 KB, 1.2 MB,
and 1.4 MB, for 1, 2, 3, 4, and 5 attachments respectively)
demonstrates that the different algorithms tested are put to
stress with adaptation ratios up to≈14:1.

The MMS in all groups were transcoded using the compared
algorithms. All experiments used the same series of MMS,
and the oracular predictors with gaussian noise (described
in section III ) used the same seed (and therefore the same
pseudo-random sequence). Further, in all compared methods,
we scaled images using a Blackman filter [19], with the ac-
tual image processing performed by ImageMagick’s Magick++
library [26]. The experiments were performed on a Dell Pow-
erEdge R210, with an Intel i3 540 CPU running at 3.07GHz,
4GB RAM, Ubuntu 11.04 with kernel 2.6, Magick++ 6.6.2,
and G++ 4.5.2., a plausible setup for a transcoding node.

TablesII to V summarize the experimental results, show-
ing, for each combination of number of attachments, opti-
mization algorithms, and predictor the resulting number of
transcodings performed, the average number of retries, theca-
pacity, the average quality of the transcoded images, and the
objective function score. Figures1 and 2 show the distribu-
tion of resulting capacity and image quality, respectively, for 5
attachments using box-plots. Finally, tableVI presents the av-
erage transcoding times (in seconds) for both proposed al-
gorithms using the JQSP predictor versus the two compara-
tive algorithms. Figure3 shows the distribution of transcoding
times for 5 attachments, also using the JQSP predictor (orac-
ular times are excluded from the results as oracular predic-
tors perform a great number of transcodings in order to for-
mulate their “predictions”).

V. D ISCUSSION

One can reasonably hypothesize that maximizing capacity
(the portion of the allowable message used by the transcoded
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Fig. 1. Capacity resulting from the different algorithms, for 5 images.
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Fig. 2. Average SSIM resulting from the different algorithms, for 5 images.
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TABLE II
SUMMARY FOR 2 ATTACHMENTS.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 2.00 0.00 0.95 0.85 0.73
Programming ±1% 2.04 0.03 0.93 0.85 0.72

±2% 2.08 0.05 0.90 0.85 0.72
±5% 2.16 0.08 0.84 0.84 0.71
±10% 2.25 0.13 0.79 0.83 0.70
JQSP 2.00 0.00 0.45 0.80 0.64

Step Oracle 2.00 0.00 0.95 0.85 0.73
Dynamic ±1% 2.02 0.01 0.93 0.85 0.72

Programming ±2% 2.03 0.01 0.89 0.85 0.72
±5% 2.04 0.02 0.81 0.84 0.71
±10% 2.06 0.03 0.75 0.83 0.69
JQSP 2.00 0.00 0.45 0.80 0.64

Scalings — 4.55 1.28 0.93 0.82 0.67
Profiles — 6.90 2.45 0.86 0.83 0.69

TABLE III
SUMMARY FOR 3 ATTACHMENTS.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 3.00 0.00 0.98 0.84 0.59
Programming ±1% 3.17 0.08 0.97 0.84 0.59

±2% 3.32 0.13 0.95 0.83 0.58
±5% 3.66 0.25 0.92 0.83 0.57
±10% 3.89 0.32 0.88 0.82 0.55
JQSP 3.01 0.01 0.61 0.80 0.51

Step Oracle 3.00 0.00 0.98 0.84 0.59
Dynamic ±1% 3.05 0.02 0.96 0.84 0.59

Programming ±2% 3.06 0.02 0.95 0.83 0.58
±5% 3.13 0.04 0.91 0.83 0.57
±10% 3.11 0.04 0.87 0.82 0.55
JQSP 3.02 0.01 0.63 0.80 0.51

Scalings — 8.59 1.86 0.93 0.78 0.49
Profiles — 14.83 3.94 0.86 0.78 0.48

TABLE IV
SUMMARY FOR 4 ATTACHMENTS.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 4.00 0.00 0.99 0.83 0.47
Programming ±1% 4.38 0.14 0.97 0.82 0.46

±2% 4.62 0.21 0.96 0.82 0.46
±5% 5.21 0.35 0.94 0.81 0.44
±10% 5.88 0.51 0.90 0.80 0.42
JQSP 4.03 0.03 0.70 0.78 0.38

Step Oracle 4.00 0.00 0.99 0.83 0.47
Dynamic ±1% 4.03 0.01 0.98 0.82 0.46

Programming ±2% 4.09 0.02 0.97 0.82 0.46
±5% 4.18 0.05 0.94 0.81 0.44
±10% 4.30 0.08 0.92 0.80 0.42
JQSP 4.12 0.03 0.75 0.79 0.39

Scalings — 11.94 1.99 0.94 0.76 0.34
Profiles — 23.62 4.91 0.84 0.76 0.34

TABLE V
SUMMARY FOR 5 ATTACHMENTS.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 5.00 0.00 0.99 0.81 0.35
Programming ±1% 5.57 0.17 0.97 0.80 0.34

±2% 6.08 0.29 0.96 0.80 0.33
±5% 6.93 0.45 0.94 0.79 0.32
±10% 7.75 0.60 0.92 0.78 0.30
JQSP 5.11 0.06 0.74 0.76 0.26

Step Oracle 5.00 0.00 0.99 0.81 0.35
Dynamic ±1% 5.04 0.01 0.98 0.80 0.34

Programming ±2% 5.08 0.02 0.98 0.80 0.33
±5% 5.22 0.05 0.96 0.79 0.32
±10% 5.33 0.06 0.94 0.78 0.30
JQSP 5.22 0.04 0.82 0.77 0.28

Scalings — 15.02 2.00 0.94 0.73 0.23
Profiles — 33.36 5.67 0.88 0.75 0.22

TABLE VI
TIMES, IN SECONDS

Number of Dynamic Step Scalings Profiles
Attachments Programming Dynamic

2 0.09 0.09 0.19 0.31
3 0.13 0.12 0.33 0.62
4 0.18 0.17 0.47 0.99
5 0.21 0.20 0.55 1.30
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Fig. 3. Times, in seconds, for the different algorithms on 5 images.

images) is essentially equivalent to maximizing perceived
quality, andvice versa. This is the hypothesis used by the
heuristics of successive scalings and successive profiles that
try merely to find the largest images (one considering arbitrary
resolutions, the other considering only profiles-specific reso-
lutions) that fits into the message in order to maximize qual-
ity. However, examining tablesII to V, and figs.1 and2, we
see that this hypothesis is not verified. While it is true that ca-
pacity and resulting message quality are correlated, we seethat
it does not suffice to maximize capacity to maximize qual-
ity. Indeed: the successive scalings adaptation method usu-
ally yield high capacity with resulting quality only comparing
to the successive profiles method, but with much worse qual-
ity than the two proposed explicit optimization methods.

In a similar way, one could hypothesize that it suffice to
maximize the average image quality as the objective function
rather than an objective function such as eq. (1) (or eqs. (5)
and (9)). Again, while for maximization, the average and
the product of image quality are correlated, it is preferable
to maximize the product as it has the distinct advantage of
rejecting solutions where one or more of the transcoded images
are of very poor quality, as maximizing the product (especially
of values between 0 and 1) also requires maximizing individual
image quality, with the side-effect of reducing variance [20]–
[22]. Using an average or sum-like objective function, we
could find ourselves with the case of a transcoding solution
for a message with five images with four high-quality images
but one image with exceedingly poor quality (which would be
unacceptable) being chosen over a preferable solution where
all five images are of approximatively equally good quality
(therefore with a small variance), simply because theaverage
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quality of the first solution is higher.
The quality of the predictor plays a major role in the quality

of the transcoded messages, but the proposed algorithms
will only degrade gracefully in the presence of increased
predictor error. Examining fig.1 for capacity and fig.2
for resulting quality, we see that, indeed, the performance
only degrades progressively as predictor error increases.With
the error-free oracular predictor, both proposed algorithms,
as expected, find very good solutions, using essentially all
capacity yielding a high average quality solution (but due
to the quantization of transcoding parameters, discussed in
sectionIII , the oracle may not find a solution using exactly
100% capacity). The JQSP predictor is doing much worse than
the oracular predictors (as it is biased and overestimates file
size [27]) but would compare to an oracular predictor with
≈ 15% error.

Resilience to predictor error and bias is a major problem for
optimization. If the predictor error is symmetric (and maybe
vaguely gaussian), the errors would tend to cancel each other
out; but if, like JQSP, the errors are asymmetric, an algorithm
such as one-shot dynamic programming would not be able
to cope with accumulated errors. However, the step dynamic
programming solution can compensate for accumulated error
as it transcodes one image, observes the transcoded size, and
readjust its size constraint accordingly. Looking at fig.1,
it is clear that the by-step strategy allows the optimization
algorithm to make much better use of the capacity (with lower
variance) than the one-shot dynamic programming approach,
an effect that is also seen on resulting average image quality,
although to a lesser extent, as shown in fig.2.

While absolute execution times of the algorithms are some-
thing of an implementation detail, it is nonetheless interest-
ing to examine how implementations compare. Consider ta-
ble VI and fig. 3. First let us compare dynamic program-
ming versus step dynamic programming. Times show that,
while both variants perform essentially the same number of
transcodings, the execution times are comparable. This means
that the optimization process is entirely dominated by the time
for the actual transcoding, and that the time spent in the opti-
mizationper seis comparatively negligible. Figure3 also re-
veals something noteworthy: the variance in execution time
is much lower using the dynamic and step dynamic program-
ming methods than with the comparative algorithms, succes-
sive scalings and successive profiles.

The number of transcoding parameters to examine will
greatly influence optimization time as, even if the dynamic
programming algorithm solving eq. (5) is computationally op-
timal, it is still essentiallyO(nm2), wheren is the number
of images andm the average number of transcoding param-
eters tested per image [24], [25]. As n is fixed (we are ex-
cluding the possibility of dropping images), a speed-up can
only be gained by the reduction ofm. The set of transcod-
ing parameters series, whether the exactT (M,D) or the pre-
dicted T̂ (M,D), can be pruned without affecting optimal-
ity by excluding transcodings yielding images exceeding ei-
ther the maximum message size or maximum resolution for
the receiving device. We can further reduce the complexity
by considering prunings that affect the optimality of the solu-

tion. For example, one could exclude transcoding parameters
that would yield very poor quality, defined by a user-specified
threshold. One could also prune the set of possible transcod-
ings to have transcoding parameters that yields (predicted) rel-
ative file sizes set at least 5% apart, or any other such heuris-
tic that yields a satisfactory trade-off between parameterden-
sity, optimization speed, predictor error, retries, probability of
failing to find a solution, and resulting adapted message qual-
ity.

In the same way, we could accelerate the successive profiles
algorithm by considering even fewer profiles; which would
make it faster, but also make it coarser and yield even worse
results. One could be tempted, on the contrary, toaddprofiles.
However, it would not be sufficient to merely add profiles,
certainly not without changing how profiles are applied. The
profiles are applied in the order shown in tableI, stepping
down resolution only when solutions using the lowest quality
factors given the currently examined resolution have been
explored. A better strategy would be to consider a profile,
say, Image Rich, but with intermediate resolutions, such as
600×450 and 533×400 (other 4:3 aspect ratio resolutions),
in combination with different quality factors, but rather than
trying a resolution with all its listed quality factors, then move
on to the next resolution if no solution is found, it would be
preferable to try combinations of resolution and quality factor
in descending order of expected resulting file size. It would
allow the successive profile algorithm to find solutions with
smaller images encoded with a larger quality factor; although,
obviously, it would not speed up the transcoding process.

For a high-volume service provider such as a telco operator,
an algorithm that produces satisfactory adaptation of messages
at the lowest possible computational cost (as adaptation rather
mundanely translates into server racks, floor space, and elec-
tricity bills) is the preferable algorithm. In this work, weshow
that the proposed dynamic programming-based algorithms are
interesting solutions, faring significantly better than compar-
ative algorithms (both strongly inspired from what is found
in commercial products and in previous literature). However,
it is an open question as to how much sub-optimality—and
how one defines optimality in this context—the users are will-
ing to accept without taking notice of image/message degra-
dation, and therefore which trade-off are available to service
providers. One can surely consider using varying strategies de-
pending on time of day and network traffic, possibly even
adapting computational effort depending on the subscribers’
data plans, network traffic, or other transient considerations.
All these are user-experience considerations that cannot be ad-
dressed by the current work, but are certainly worthwhile ex-
ploring further.

VI. CONCLUSION

In this work, we have shown that the two proposed
predictor-based dynamic programming multipart mes-
sage adaptation algorithms maximize quality explicitly (as a
proxy for user-experience), also making better use of mes-
sage capacity (the portion of the allowable message size used)
than the comparative algorithms inspired by actual prod-
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ucts and in previous literature. We further show that while pre-
dictor accuracy is important, our proposed algorithms onlyde-
grade gracefully with predictor error increase, making them ro-
bust to prediction errors. We also show that the proposed al-
gorithms are significantly faster and better than prior solu-
tions.
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