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Abstract—Multimedia Messaging Services (MMS) allow users olutions up to640 x 480 pixels, and a maximum message size
with heterogeneous terminals to exchange structured messagesof 100 KB.
composed of text, images, sound, and video. The MMS market  gaper_side adaptation will ensure that not only each indi-

grows rapidly, posing the problem of MMS adaptation, necessary . . . . . . .
to ensure interoperability between terminals. Message adaptation vidual multimedia attachment is compatible with the reeeiv

poses technological challenges, especially when one considerfld terminal but also that the message as a whole can be sent
the case of high-volume service providing. In this work, we and correctly interpreted. Each attachment is to be charact
propose novel predictor-based dynamic programming approact® jzed and transformed, if need be, to satisfy the receiving te

to MMS adaptation, explicilly maximizing user experience, \uinars constraints, whether by adjusting its format, heso

rather than relying on heuristics to deliver satisfactorily adapted .. . . .
messages. We show that the proposed solutions lead to noticeabl)}'on' or bit-rate. In the absence of server-side adaptaton

superior image quality with faster transcoding times than Message exceeding the terminal capabilities (either by mes
comparative algorithms inspired by what is found in actual sage size or media type) can result in terminal-specific be-

products and in the literature. havior that ranges from merely incomplete messages to ter-
Index Terms—MMS, image adaptation, JPEG, optimization, predic- Minal crash. If the server is capable of determining the capa
tor, dynamic programming, SSIM. bilities of the terminal but incapable or unwilling to pemnfio
adaptation, it can revert to alternate strategies such rad- se
I. INTRODUCTION ing a text-only SMS (Short Message Service) with the lo-

Multimedia Messaging Services (MMS) allow users witi¢ation of the original message for the user to download or
heterogeneous terminals to exchange structured messdyje¥se by other meang][ While this ensures delivery of con-
composed of text, audio, still image, and viddéh MMS traf- tent, it does not provide the user with a satisfactory experi
fic will likely grow very rapidly in the next few years, pro- €nce, hinting that server-side adaptation is preferabi® fihe
viding both business opportunities and technological chalsers’ point of view.
lenges P]. As MMS usage grows and standards evolve, Multimedia message adaptation, however, is not a trivial
providers are pressed to manipulate ever greater nufsk as it does not suffice to apply heuristics such as succes-
bers of messages with richer media, but this daunting task cgively reducing the bit-rate, or successively reducing réee
not be reduced to mere message-passing as server-side a@lgon of the various message attachments until a message
tation of messages is necessary to ensure interoperad@tisfying the receiving terminal’s various constrairgspro-
ity amongst users3]. The very high volume of messages tgluced to yield satisfactory results. We have shown, in previ
be manipulated by service providers will ask for the most epus work, that strategies using joint adaptation of compres
ficient adaptation algorithms and strategies to cope with d@on parameters and scaling produced significantly better r
mand, growth, evolution of standards, and to mitigate sc&ults than using either alon&][ In this work, we propose
ing problems. to extend these ideas to the explicit optimization of corepre

For MMS applications, a receiving terminal is charactesion parameters and scaling over a complete image-only mes-
ized by its capabilities—or maybe more accurately byliits Sage in order to achieve an adaptation that not only satis-
itations—as defined byprofiles A profile determines the ter- fies the receiving device constraints but also maximizes-ove
minal’s set of constraints, such as the maximum multim@!l perceived quality, and therefore, we expect, maximizsey
dia message size in bytes, the media types that the ter@fperience. While the techniques proposed in this work can
nal can interpret as well as the specific constraints of ind¥€ applied to any type of images, and to any media in gen-
vidual media types such as maximum image size or magtal, we will, however, without loss of generality, restrouir-
mum bit-rate 1]. A device supporting the “Image Rich” pro-selves to the case of JPEG images, as most of the traffic is
file will support various still image formats, images witlsre Now composed of images from camera phones in JPEG for-

mat.

This work was funded by Vantrix Corporation and by the NatiBai- A priori adapting a single JPEG image to fit given con-
ences and Engineering Research Council of Canada under dhi@b@a- ’

tive Research and Development Program (NSERC-CRD 32668 E0%ails: straints appears as a tr'\_”al task, but JPEG qdaptanonfa;:tn
pi geon@r o. unont r eal . ca, st ephane. coul onbe@t snt | . ca a costly process, especially when one considers the high vol



umes of images to manipulate in the context of server-sidéth perceived quality 16], in addition of being intolerant
services. Of course, solutions have been proposed to speétransformations such as translation, scaling, and astir

up transcoding under constraints such as maximum file sizene of which automatically translates into a degradatibn o
and maximum resolution. Some solutions address the prajuality to a human observer. For the purpose of estimatiag th
lem of estimating the transcoded file size of a single JPEG imesulting quality, we will use the structural similaritydex
age but are still computationally intensive (in additionn® (SSIM) proposed by Wangt al. which exhibits tolerance
cessitating extensive modifications in the existing JPEf& soto moderate transformations, while being better corrdlate
ware libraries) or overly rigid, for example, consideringlyo mean opinion scores (MOSWLY]. The SSIM is essentially
scalings by power of two because they can be performed afwindowed correlation factor between original and digtrt
ficiently in the transform (DCT) domair6]-[8]. Other solu- images and, as such, yields results [efl, 1], but for our
tions for image transcoding were proposed in the broader capplication we will constrain the measure fin1], with any
text of web or low-bandwidth resource access, and if some segative values mapped onto 0. Constraining the SSIM on
lutions are designed to transcode an image so that it fits ffdel] allows us to use the objective function

constraints while minimizing transcoding tim@][ others use n

a small number of fixed transcoding profiles setting both com- Q(M,T) = H Q (mi, T(mg, ;) (1)
pression parameters and maximum image resolution to achiev i—1

adaptation 10]; neither quite expressing the problem in term
of explicit maximization of resulting image quality or uset-
perience. More complex adaptation approaches, based on
understanding of message contents an_d image. points of imle:{tl,tQ,...,tn} is the series of transcoding parame-
est were also proposed], [12], b.Ut’ while promising, these ters to be applied to the images. The transcoding parame-
techniques may be too computationally expensive for the tyﬁarsti — (g, 2) are such thab< g, < 100 is the output qual-

.Of high-yolume _torlanscoding needed by multimedia messqg; factor (using the semantics proposed by the 13g])[and
ing service providersy. 0<z;<1 a scaling factor used to resize the image. The func-

Therefore, adapting an image, even in JPEG format, agaif§h, 7(,,,, ¢,), the transcoding function, applies transcod-
maximum file size and resolution while maximizing perce|veﬁi]g parameters, on imagem; yielding an image with res-
quality in a computationally efficient manner remains a €ha)| tion 2R(m;) = (ziwi, z:h;) compressed with quality fac-
lenge as there are no established methods to estimate thet(;re-i_
sulting file size and quality of an image subject to changes in
compression parameters and resolution. To this end, we h%
proposed, in previous work, predictors and systems to ad
images and messageS],[[13], [14]. In this work, we ex-
tend these systems and a previous wat| [to the adapta-
tion of messages against receiving terminal constraints-co

Where M={p; mi,ma,...,m,} is the message to be
adapted, with presentation and composed of thes im-
s m;, with resolutions R(m;)=(w;, h;), and where

Lastly, 0< @ (m;, T (m;, t;)) <1 compares the original im-
m, to its transcoded versioh(m;, t;) using SSIM, as pre-
usly discussed. Since the imagesandT (m;, t;) may dif-
fer in resolution, that is, whenever£ 1, the imageT (m;, t;)
is rescaled to the original resolutiaR(m;) before compar-

ison [B]. In all cases, the image scaling is performed us-

posed of multiple images using optimization algorithms ma>ﬁ1g a Blackman filter, chosen because of its spectral prop-
imizing explicitly perceived quality of the resulting mesges. erties [L9] '

However, optimizing adaptation exactly is a very costly-pro Eq. (1), as a measure of the quality of the transcoded mes-

cess and, to speed it up significantly, we propose to use@redi ‘ T . ) .
. . ; sage, is to be maximized by a transcoding operation series
tors. In particular, we will reuse the predictor presentefb],

hereafter denoted JQSP (for JPEG Quality and Size Pre C_under the constraints of a devide. The first constraint is

tor). We will further show that not only the proposed metho s"’.It the total size of the transcoded 'mages (plus Fhe presen
X : . . ation meta-data) does not exceed the maximum size allowed
yield better perceived quality than approaches found id,ian . ST
. . L . for a message by the device. The second constraint is a res-
spired by, prior art, but also that the transcoding timessaye . . .
L olution constraint, where all the images must have a resolu-
nificantly lower. L - . .
. . . tion inferior or equal to the device’s maximum resolution.
The work is organized as follows. Sectidhlays out the The si traint i db
basic definitions, details the problem space, and presbkats t € Size constraint IS expressed by
proposed solutions. Sectidlh describes the test methodology, n
the predictors, and algorithms used for comparison. Thie tes ZS(T(mi’ti)) < S(D) - P(M, D), @)
results of the proposed algorithms under various conditaye =1
presented in sectiolV, and discussed in sectioh. Finally, wheresS (7 (m;,t;)) is the file size in bytes of the transcoded
sectionVI concludes the present work. image 7 (m;, t;), S(D) the maximum message size in bytes
for device D, and P(M, D) is the size, also in bytes, of
the presentation (headers, markup, etc.) necessary for the
adapted messag®/ to display correctly on devicd. The
Measuring perceived visual quality of images subject teft-hand side of eq2) determine thecapacity the portion
transformations is a difficult task. The peak signal-toseoi of the allowable byte budget used by the message using
ratio (PSNR) have been used in literature as an estimateti@inscoding parameter seriés Let us also note that we do
perceived quality but have been shown to be poorly corrélateot interest ourselves in the quantify(M, D), the amount

Il. PROPOSEDSOLUTION



of bytes necessary for the presentation of mess&fjeon ing it a Bellman equation23], and thus amenable to effi-
device D, which would require adaptation of the presentatiocient optimization using dynamic programming. More specif
to estimate correctly. It is rather supposed to be a smadally, the optimization problem considered in ed). is adis-
essentially negligible, part of the message budget. tribution of effortproblem, where a finite quantity of resources

The image resolution constraints for messdgeand de- are allocated strategically in order to maximize a gain func

vice D are given by the orientation-independent resolutidiPn [23], [24]. For the current problem, the resources are
constraints transcoded file sizes whose sum is constrained by the maxi-

< max(wp, hp) mum message size_ as stated in éq_.the gain from z_aIIO(_:ation

) ) ’ ’ (3) is the quality obtained as determined by the objective func-
zimin(wi, h;) < min(wp, hp) . tion, eq. @); under the additional constraints of maximum res-
where (wp,hp) is R(D), the receiving device’s maximumolution, as given by eqs3]. This general class of problem
image resolution, which is independent of the device's aictuvas studied extensively and there exist efficient polynémia
screen resolution. We therefore suppose that the receiviif§e algorithms to find which allocation of resource maxi-
device scales and rotates the pictures on screen for b@es the objective function under the given constrai@t, [

z; max(wj, h;)

viewing conditions. [25].
The optimal series of transcoding for a messagé/ and  S°Iving eq. 4) exactly is possible, but would require for all
a deviceD is therefore given by transcoding parameters examined by the algorithm that an ac
tual transcoding is performed to measure resulting file size
1" = arg max Q(M,T) , (4) and quality, clearly a prohibitive process. But rather tpan
TeT(M,D) forming a transcoding for every combination of transcoding

where T is the set of all possible series of transcodingarameters examined, we will resort to fast predictors, that
parameters satisfying the constraints of @).4nd eqs.g). 9iven a (superficial) characterization of an image(such as
The cardinality of'(M, D) can be very large (even inﬁnite)original file size, quality factor, and resolution) and seod-

if we do not constrain the transcoding parameters to 30 parameters, will predict the resulting file size and qual-
rather small set of discrete values to avoid the combirgitority of 7 (m,t), the transcoded image: to which were ap-
explosion of the number of states the algorithm solving 4). (Plied transcoding parametets

examines. The quality factor, as defined by the 1JG, is anWe have presented such predictors in previous wosks [
integer taking values from 0 to 100, inclusive, but the swali [13] and in this study, we will use the file size and quality pre-
factor is a real, or at the very least rational, number arstictor presented ing], which will be denoted JQSP, the JPEG
can therefore take an infinite number of values]onl]. To Quality and Size Predictor. To assess the proposed methods
solve this problem, in previous worlg]} [13], [14], we have resilience to prediction error, we will, in addition to JQ$Be
constrained both transcoding parameters to take at most @@acular predictors, predictors with known charactersstilis-
distinct values, that is, quality factors were limited tcethcussed in the next section, sectibh

set {10,20,...,100}, and scalings td0.1,0.2,...,1}, thus The objective function using predictors is rewritten as

limiting the number of possible transcodings to 100. We will R no

use the same values for the present work’s experiments. Q(M,T) = H Q(mg, ;) , (5)
i=1

The objective function eql] presents only one of the
possible measures of overall message quality; howevearreﬂevwhere@(m“ti) is the quality predictor taking an image;

aspects make it especially suitable for the task considergg, more exactly, its characterization composed of itsinal
While maximizing €q.1) is not the same as maximizing theqajity factor, file size, and resolution) and a transcoding
average quality of the transcoded images, the eXpeCted@E’eroperatiomi, rather than using)(im;, 7 (m, t;)) that compares

quality necessarily increases with increases of BQ.&S @ the actual transcoded imag&m;, t;) with the original image
consequence of

i _ n The size constraint must also be modified to accommodate
H Q (mi, T(mi, 1)) < min {Q (ma, T(mi, 1)) },_, predictors. The size constraint ed) {s rewritten as
i=1

where{z;} , denotes the sequene,...,z,}. The nature Z§(mi7ti) < S(D) - P(M,D), (6)

of @ will furthermore cause the maximization of ed) ( i—1

to reduce its variance2(]-[22]. Therefore, maximizing the S _ . _
proposed objective function will have the side effects d¥heres(mi,t;) denotes the predictor of the size of image

finding solutions with higher expected average quality arfif! Which were applied the transcoding parameterggs. ),
lower variance. Lower variance is especially interestisgta "OWeVer, is unchanged as resolution remains a deternainisti

translate into reducing the risk of finding solutions were ofunction of z;
transcoded image is of very poor quality while all the othef@ny- . o
are of good quality, rather than finding solutions where iggal ~ The optimal predicted transcodifg" is given by

is balanced between all images. T* = argmax O(M,T), )

The objective function eqlj is convex and separable, mak- TeT(M,D)

and R(m;), and therefore contains no uncer-



where trle(f are series of transcoding parameters drawn frofaund by explicit optimization are then used to perform mes-

the setT' (M, D) of all series of transcoding parameters osage adaptation. If the adaptation yields a message ldrger t

messageM that (probably) satisfy constraints eq3) @nd the maximum message size for the receiving device due to size

eg. 6) of the deviceD. prediction error—it cannot yield a message with images of in-
To summarize, we formulate the problem of adapting imageempatible resolutions—a new, smaller, maximum message

only MMS as a distribution of effort problem amenable taize is set for the device and adaptation is retried. The maxi

dynamic programming. We further propose to reduce tlmeum message size is adjusted by a faetp(set to0.95 in our

complexity of the problem by replacing actual transcodibgs experiments) at each iteration, that is, we rewrite the stre

size and quality predictors in order to perform the optiticza  straint eq. §) as

efficiently. The next section discusses the generation ef th n

setT(M7D), the series of transcodings on messddethat Zg(mi,ti) < O/f—ls(D) — P(M, D) (8)

(probably) satisfy the constraints of the deviceWe will also =1

present the details of the proposed optimization algostamd ¢, the 1.th iteration: at the first iteratiork = 1, the constraint
the details of the two comparison algorithms. is equivalent to eq§).

Ill. TRANSCODINGALGORITHMS

The JQSP (for JPEG Quality and Size Predictor) introduc ; ;
in [5] differs from the predictor introduced inlf] as it %j Step Dynamic Programming
does not directly predict file sizes and quality from an image However, as we will discuss further in sectigh the exper-
characterization and a transcoding operation but ratfegli@s iments show that using dynamic programming as described
transcoding parameters and resulting quality from an imagBove, prediction error cumulate rather than cancel out—
characterization and a target file size. Either predict@s Cespecially when the predictor is biased. The second pradpose
be used to create a sdf(M, D) for a messageM and method, that we will refer to as “step dynamic programming”
receiving deviceD, but in this work, as we mentioned earliermitigates error propagation by proceeding by iterativengefi
we will use the JQSP. The JQSP predictor was trained @ient of the solution, again based on dynamic programming.
approximately 70 000 JPEG images gathered from the Interr@tep dynamic programming will first optimize the message
using a web crawler starting at various popular sites flobally and determine the predicted optimal transcodiag p
2008 [L3]. The density of the JQSP predictions was adjustegdmeters series, but will transcode only the first image (in a
so that target file sizes were set 5% apart, thus limiting tiigchment order). After the first image is transcoded, its ac-
size of T'(M, D) for optimization. tual file size is observed and the budget for the remaining im-

Proposing optimization methods based on a specific predigjes is readjusted to take into account the transcoded image
tor such as the JQSP validate the predictor more than it vahd the corresponding prediction error. The remaining &sag
idates the methods themselves. In order to show the prepe optimized jointly and, again, only the first of the remain
erties of the proposed methods such as resilience to predigy images is transcoded, its transcoded size observed, and
tor error and ultimately determine the upper-bound on @itaibudget readjusted. That is, e§) pecomes
able quality, we will useracular predictors. The oracular pre- | N
dictor “predicts” the exact file size and quality resultingrh g Gl 4. k—1 -
transcoding parameters applied to an image by actually pe;_; S(T(ms 17)) + ;S(m“m Sar S(D) - P(M, D)
forming the transcoding corresponding to the transcodimg p .

rameters. To further demonstrate that the proposed methgéit%tegfh(w't_?hzz f’i’ . 'tin _'I'lr;e?*t‘fj: 1t’ V\tﬁ utse eq.&é}
are resilient, that is, degrade gracefully in the preserida-o of the kth (with k> 1) iteration. ; denote the transcoding

creasing errors in the predictors, we will use predictors dgzrarln(tater aIreadyTrc]:hosent (btUt noft ne:;es_satr]ly optimal én zn
rived from the oracular predictor with relative gaussian e solute sense). The next step of optimization proceeds by

ror on file size and quality of 1%, 2%, 5% and 10%, 95% 0§olving the modified object.ive function on the last-s

the time. To popuIatcTA(M, D) using the oracular predictors,ter,ms'_ correspiondlng to the images yet to be transcoded. The
the transcoding parameters were limited to quality factdrs objective function eq.q), at steps = 2,3,...,n — 1, becomes
{10,20,...,100} and scalings 0f0.1,0.2,...,1.0}, thus lim- ~ _ s—1 noo

iting the number of transcoding parameters to at most one hurs(M,T) = (H Q (mi»T(mi»t?))> <H Q(Wli,tz‘)) ,

dred per image. Let us now expose the details of our two pro- i=1 i=s )

posed solutions to the problem of adgptatlon of JPEG'On\}yhere the left part corresponds to images already transcode
messages, followed by the two comparison methods. (and therefore with known quality—which we do not neces-

sarily need to observe) and the right part correspond tolthe o
A. Dynamic Programming jective function to maximize.

The first proposed method, hereafter referred to as simplyReadjusting budget and re-optimizing at each transcoded
“dynamic programming”, is to solve ed/)( directly by dy- image greatly reduces the propagation of prediction errors
namic programming to obtain the predicted optimal transcodith the consequence that, as we will see in secténthe
ing parameters series. The optimal transcoding parametalgorithm makes better use of capacity.



TABLE | . . . . . . .
COMBINATION OF RESOLUTION AND QUALITY FACTORS ForMING THE  USING a fixed but relatively high quality factor while adjast

PROFILES USED FOR ALGORITHM SUCCESSIVE PROFILES only resolution—in order to provide better image quality.
One could also think of an algorithm where the images are
Resolution  Quality Factors reduced toR(D), the maximum resolution for the receiving

device and where further adaptation is achieved only by
using successively coarser quality factors until the ngessa
satisfies the receiving device constraints. That stratemylay
however, lead to the undesirable result of relatively high
resolution images compressed with very low quality fagtors
thus exhibiting conspicuous blocking artifacts. This aiidpn
C. Comparative Algorithms would likely produce worse results than either of the pregbs
To compare the two proposed and novel solutions, we wiipmparative algorithms, and as such is not very interesting
use two algorithms inspired by the fixed profiles adaptation
strategy of Moharet al.[10]. The first comparative algorithm, IV. RESULTS
“successive profiles,” will apply successively more resive ~ For the experiments, we created four groups of 1000
profiles to all images until the transcoded message satistdMS, with two (a minimum for “multipart”) to five attached
the receiving device constraints. For this algorithnprafile images. The images with resolutions betwe0 x 200 and
defines both quality factor and maximum resolution. F6t000x 2000 were randomly chosen from a database of 370 000
example, a profile could limit the resolution ®10x480 images obtained by crawling the web in the fall of 2018]]
with a quality factor of 90. The next profile could use théather than the database from previous works fr&in [[13].
same resolution but a quality factor of 80, the next coulfihe profile chosen to test adaptation in our experiments
reduce the resolution 820 x 240 but keep a quality factor of is “Image Rich” (supporting images with resolutions up to
80, and so on; each successive profile being more restrictfi) x 480 and a maximal message size of 100KB). Forcing
than the preceding, reducing resolution, quality factar, énessages to “Image Rich” from the original MMS (whose
both. The number and determination of useful profiles in thverage message size of 284 KB, 563KB, 790KB, 1.2MB,
context depends on the performance objectives one expeafi 1.4MB, for 1, 2, 3, 4, and 5 attachments respectively)
The profiles used for our experiments are shown in Tabledemonstrates that the different algorithms tested are @ut t
However, we will see in the next section that it is not usefitress with adaptation ratios up 4e14: 1.
to merly have a great number of profiles. The MMS in all groups were transcoded using the compared
The second comparative algorithm, “successive scalinglgorithms. All experiments used the same series of MMS,
will adjust only the images’ scalings while using a fixed, bugnd the oracular predictors with gaussian noise (described
reasonable, quality factor of 85. Starting at the maximusa ren sectionlll) used the same seed (and therefore the same
olution allowable for the receiving device, the algorithnilw pseudo-random sequence). Further, in all compared methods
successively scale down all images (using the fixed quali§e scaled images using a Blackman filt@€][ with the ac-
factor) until the adapted message satisfies the device c8#alimage processing performed by ImageMagick's Magick++
straints. For each image;, the largest allowable scaling fac-library [26]. The experiments were performed on a Dell Pow-
tor 0 < z; <1 such thatz; R(m;) < R(D) is found. Adaptation erEdge R210, with an Intel i3 540 CPU running at 3.07GHz,
proceeds by adjusting, at iteratidn= 1,2, ... a global pa- 4GB RAM, Ubuntu 11.04 with kernel 2.6, Magick++ 6.6.2,
rameters, (initially 3; = 1) that is applied to every image soand G++ 4.5.2., a plausible setup for a transcoding node.
that the scaling factor of image:; at stepk is Siz;, yield- Tablesll to V summarize the experimental results, show-
ing an image of resolutior;,z; R(m;). As scaling controls ing, for each combination of number of attachments, opti-
quadratically the file size (a scalingyields an image of rel- Mization algorithms, and predictor the resulting number of
ative surface:2), a reasonable adjustmefif,, (for k>1) is transcodings performed, the average number of retriessathe

640x480 90, 80, 70, 60
320 %240 90, 80, ..., 50
160 x 120 90, 80, ..., 40

given by pacity, the average quality of the transcoded images, amd th
\/S(D) — P(M, D) objective function score. Figures and 2 show the distribu-
Bry1 = a2 5 - , tion of resulting capacity and image quality, respectivédy 5
k attachments using box-plots. Finally, tablée presents the av-

wherecs is a dampening factor (set €95 for our experimen- erage transcoding times (in seconds) for both proposed al-
tation) to ensure that the budget is reduced further at éadr i gorithms using the JQSP predictor versus the two compara-
tion, as well as limit the number of iterations(D) is the max- tive algorithms. Figur& shows the distribution of transcoding
imum message size for the receiving devide P(M, D) is times for 5 attachments, also using the JQSP predictor {orac
the size of the presentation of messadgeon deviceD, and ular times are excluded from the results as oracular predic-
S;. is the size of the message obtained at dteffhe adap- tors perform a great number of transcodings in order to for-
tation terminates when a message satisfying the device camilate their “predictions”).
straints is produced.

Both comparative algorithms try to heuristically maintain V. DiscussIoN
a reasonable balance between image scaling and qualitpne can reasonably hypothesize that maximizing capacity
factors—one through the predefined profiles and the other {ikie portion of the allowable message used by the transcoded
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TABLE Il
SUMMARY FOR 2 ATTACHMENTS.

TABLE VI
TIMES, IN SECONDS

Optimization Predictor Average Average Average Average jeCilve Number of Dynamic Step Scalings Profiles
Algorithm Transcodings Retries Capacity Quality Function Attachments Programming Dynamic
Dynamic Oracle 2.00 0.00 0.95 0.85 0.73
Programming  £1% 2.04 0.03 0.93 0.85 0.72 2 0.09 0.09 0.19 0.31
+2% 2.08 0.05 0.90 0.85 0.72 3 0.13 0.12 0.33 0.62
+5% 2.16 0.08 0.84 0.84 0.71 4 0.18 0.17 0.47 0.99
+10% 2.25 0.13 0.79 0.83 0.70
JQSP 2.00 0.00 0.45 0.80 0.64 5 021 0.20 0.55 1.30
Step Oracle 2.00 0.00 0.95 0.85 0.73
Dynamic +1% 2.02 0.01 0.93 0.85 0.72
Programming +2% 2.03 0.01 0.89 0.85 0.72
+5% 2.04 0.02 0.81 0.84 0.71 7
+10% 2.06 0.03 0.75 0.83 0.69 g °©
JQSP 2.00 0.00 0.45 0.80 0.64 Times for 5 Images o
Scalings — 4.55 1.28 0.93 0.82 0.67 &
Profiles — 6.90 2.45 0.86 0.83 0.69
192} >
‘(CD o
TABLE Il S 4+ 8
SUMMARY FOR 3 ATTACHMENTS. 3 e
U 3 o
E o
Optimization Predictor Average Average Average Average jeCilve =
Algorithm Transcodings Retries Capacity Quality Function 2
Dynamic Oracle 3.00 0.00 0.98 0.84 0.59
Programming +1% 3.17 0.08 0.97 0.84 0.59 14
+2% 3.32 0.13 0.95 0.83 0.58
i5°/z 3.66 0.25 0.92 0.83 0.57 0 % %
i_](lgos(? 35?091 O(fozl Odi?l 06220 06?551 Dynamic JQSP ‘ Step Dynamic JQSP ‘ Scalings Profiles
Optimization Method
Step Oracle 3.00 0.00 0.98 0.84 0.59
Dynamic +1% 3.05 0.02 0.96 0.84 0.59
P i +2% 3.06 0.02 0.95 0.83 0.58 : . ; B : :
fogramming - -2 31 008 0o Py 057 Fig. 3. Times, in seconds, for the different algorithms on 5 iesag
+10% 3.11 0.04 0.87 0.82 0.55
JQSP 3.02 0.01 0.63 0.80 0.51
Scalings — 8.59 1.86 0.93 0.78 0.49 . . . . o .
Profiles — 14.83 3.94 0.86 0.78 0.48 images) is essentially equivalent to maximizing perceived
quality, andvice versa This is the hypothesis used by the
TABLE IV heuristics of successive scalings and successive profilds t
SUMMARY FOR 4 ATTACHMENTS. try merely to find the largest images (one considering aatyitr
resolutions, the other considering only profiles-speciéisor
Optimization Predictor Average Average Average Average jeCive | t h f . h . d P |
Algorithm Transcodings ~ Retries  Capacity ~ Quality  Functon U ions) that fits into the message in order to maximize qual-
Dynamic Oracle 4.00 0.00 0.99 083 047 ity. However, examining tabled to V, and figs.1 and 2, we
Programming +1% 4.38 0.14 0.97 0.82 0.46 i = H H HE
Ton Te 02 o8 055 04  See that this hypothesis is not verified. While it is true tfeat c
fop 521 035 0.04 081 0.4 pacity and resulting message quality are correlated, wéhste
JQsp 4.03 0.03 0.70 0.78 038 It does not suffice to maximize capacity to maximize qual-
Step. Oracle 4.00 0.00 0.99 0.83 047 ity. Indeed: the successive scalings adaptation method usu
Progamming  £aw 409 002 oor  ose  os allyyield high capacity with resulting quality only comjiag
+5% 4.18 0.05 0.94 0.81 0.44 i 1 1 -
o P 908 o o8 o FO the successive profiles metho'd, bu't vylth.much worse qual
JQsP 412 0.03 0.75 0.79 039 ity than the two proposed explicit optimization methods.
Scalings — 11.94 1.99 0.94 0.76 0.34 In a similar way, one could hypothesize that it suffice to
Profiles — 23.62 4.91 0.84 0.76 0.34 — . . . . .
maximize the average image quality as the objective functio
rather than an objective function such as &j.(or egs. b)
SUMMARY F-I(-;ARBI5_§T\‘I/'ACHMENTS and Q)). Again, while for maximization, the average and
' the product of image quality are correlated, it is prefezabl
Optimization Predictor Average Average Average Average jeCive tO. ma.lelze the prOdUCt as it has the dIStlnCt advantage Of
Algorithm Transcodings ~ Retries  Capacity ~ Qualty  Funcion rejecting solutions where one or more of the transcoded émag
Dynamic Oracle 5.00 Q00 099 o8 o3 are of very poor quality, as maximizing the product (esgbcia
Programmin 1% 5.57 .17 .97 . .34 . . . -
RIS o 5,08 o2s  os  oso  oas  Ofvalues between 0 and 1) also requires maximizing indafidu
+5% 6.93 0.45 0.94 0.79 0.32 H H H H H H
Lio% 778 06 P s 030 image q_uallty, with the S|de-effect_of redl_Jcm_g vanan?é]{-
JQspP 5.11 0.06 0.74 0.76 0.26 [22]. Using an average or sum-like objective function, we
Step_ Oracle 5.00 0.00 0.99 0.81 035 could find ourselves with the case of a transcoding solution
Dynamic +1% 5.04 0.01 0.98 0.80 0.34 . . . . . . .
Programming 2% 5.08 0.02 0.98 0.80 0.33 for a message with five images with four high-quality images
ey o2 oo A o%  but one image with exceedingly poor quality (which would be
Josp 522 0.04 0-82 o-17 %2 unacceptable) being chosen over a preferable solutionevher
Scalings — 15.02 2.00 0.94 0.73 0.23 1 1 i I I
Ao - o 2 o o oz all five images are of approximatively equally good quality

(therefore with a small variance), simply becausedtierage



quality of the first solution is higher. tion. For example, one could exclude transcoding parameter
The quality of the predictor plays a major role in the qualityhat would yield very poor quality, defined by a user-spedifie
of the transcoded messages, but the proposed algorithim@shold. One could also prune the set of possible trarscod
will only degrade gracefully in the presence of increasdadgs to have transcoding parameters that yields (predicétd
predictor error. Examining figl for capacity and fig.2 ative file sizes set at least 5% apart, or any other such heuris
for resulting quality, we see that, indeed, the performantie that yields a satisfactory trade-off between parameesr-
only degrades progressively as predictor error increddéh. sity, optimization speed, predictor error, retries, piuliy of
the error-free oracular predictor, both proposed algorith failing to find a solution, and resulting adapted messagé- qua
as expected, find very good solutions, using essentially &if.
capacity yielding a high average quality solution (but due In the same way, we could accelerate the successive profiles
to the quantization of transcoding parameters, discussedaigorithm by considering even fewer profiles; which would
sectionlll, the oracle may not find a solution using exactlynake it faster, but also make it coarser and yield even worse
100% capacity). The JQSP predictor is doing much worse thegsults. One could be tempted, on the contrargdd profiles.
the oracular predictors (as it is biased and overestimaees filowever, it would not be sufficient to merely add profiles,
size R7]) but would compare to an oracular predictor wittcertainly not without changing how profiles are applied. The
~ 15% error. profiles are applied in the order shown in talhlestepping
Resilience to predictor error and bias is a major problem fdown resolution only when solutions using the lowest gualit
optimization. If the predictor error is symmetric (and maybfactors given the currently examined resolution have been
vaguely gaussian), the errors would tend to cancel eachr otbgplored. A better strategy would be to consider a profile,
out; but if, like JQSP, the errors are asymmetric, an algorit say, Image Rich, but with intermediate resolutions, such as
such as one-shot dynamic programming would not be alge0 x450 and 533 x400 (other4:3 aspect ratio resolutions),
to cope with accumulated errors. However, the step dynaniiccombination with different quality factors, but rathdran
programming solution can compensate for accumulated ertgring a resolution with all its listed quality factors, thenove
as it transcodes one image, observes the transcoded size,@nto the next resolution if no solution is found, it would be
readjust its size constraint accordingly. Looking at fig. preferable to try combinations of resolution and qualitgtéa
it is clear that the by-step strategy allows the optimizatioin descending order of expected resulting file size. It would
algorithm to make much better use of the capacity (with lowetlow the successive profile algorithm to find solutions with
variance) than the one-shot dynamic programming approasmaller images encoded with a larger quality factor; altfiou
an effect that is also seen on resulting average image gual@bviously, it would not speed up the transcoding process.
although to a lesser extent, as shown in fig. For a high-volume service provider such as a telco operator,
While absolute execution times of the algorithms are somgn algorithm that produces satisfactory adaptation of agpgss
thing of an implementation detail, it is nonetheless irgere at the lowest possible computational cost (as adaptatibiera
ing to examine how implementations compare. Consider t@&undanely translates into server racks, floor space, amd ele
ble VI and fig. 3. First let us compare dynamic programiricity bills) is the preferable algorithm. In this work, veéow
ming versus step dynamic programming. Times show thabat the proposed dynamic programming-based algoriths ar
while both variants perform essentially the same number ipferesting solutions, faring significantly better tharmgar-
transcodings, the execution times are comparable. Thimsneative algorithms (both strongly inspired from what is found
that the optimization process is entirely dominated by timet in commercial products and in previous literature). Howgeve
for the actual transcoding, and that the time spent in the opt is an open question as to how much sub-optimality—and
mization per seis comparatively negligible. Figurg also re- how one defines optimality in this context—the users are will-
veals something noteworthy: the variance in execution tinigg to accept without taking notice of image/message degra
is much lower using the dynamic and step dynamic programation, and therefore which trade-off are available to iserv
ming methods than with the comparative algorithms, succgsoviders. One can surely consider using varying strasedge
sive scalings and successive profiles. pending on time of day and network traffic, possibly even
The number of transcoding parameters to examine wélapting computational effort depending on the subsaiber
greatly influence optimization time as, even if the dynamigata plans, network traffic, or other transient considenati
programming algorithm solving ecb)is computationally op- All these are user-experience considerations that carmatlb
timal, it is still essentiallyO(nm?), wheren is the number dressed by the current work, but are certainly worthwhile ex
of images andn the average number of transcoding paranploring further.
eters tested per image4], [25. As n is fixed (we are ex-
cluding the possibility of dropping images), a speed-up can
only be gained by the reduction eof. The set of transcod-
ing parameters series, whether the exBi¢d/, D) or the pre-  In this work, we have shown that the two proposed
dicted f(M, D), can be pruned without affecting optimal-predictor-based dynamic programming multipart mes-
ity by excluding transcodings yielding images exceeding esage adaptation algorithms maximize quality explicitlg &
ther the maximum message size or maximum resolution fproxy for user-experience), also making better use of mes-
the receiving device. We can further reduce the complexisage capacity (the portion of the allowable message sizd) use
by considering prunings that affect the optimality of théuso than the comparative algorithms inspired by actual prod-

VI. CONCLUSION



ucts and in previous literature. We further show that whike-p [22] M. D. Springer and W. E. Thompson, “The Distribution oétRroducts
dictor accuracy is important, our proposed algorithms aldy
grade gracefully with predictor error increase, makinghe-
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