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Abstract

The Multimedia Messaging Service (MMS) platform allows mes-
sages composed of various multimedia attachments to be exchanged
between users of mobile devices. However, these heterogeneous de-
vices exhibit different capabilities regarding what media types, res-
olution, and maximal message size they support making the adap-
tation of messages mandatory to ensure compatibility between send-
ing and receiving devices. The challenge is therefore to adapt mes-
sages so that they satisfy the receiving device’s constraints in a way
that both maximizes the user experience and minimizes the compu-
tational cost of adaptation. Minimizing computational cost will help
cope with high-volume traffic while maximizing user-experience, as es-
timated by the perceived quality of adapted messages, will secure the
service provider’s user base. In this work, we propose a generic adap-
tation scheme based on predictors for file size and image quality re-
sulting from transcoding parameters applied to a given image that
will explicitly maximize perceived quality as estimated by the struc-
tural similarity image quality index. We will further show that our
proposed method is resilient to the imprecision of the predictors and
that it yields significantly better quality at a greatly reduced compu-
tational cost compared to other methods proposed in prior art.
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1 Introduction

From the users’ point of view, Multimedia Messaging Services, or MMS,
merely provide a convenient mean of exchanging messages composed of var-
ious multimedia attachments such as audio, still image, and video, between
mobile terminal users. If, for a user, sending a message is a simple mat-
ter, as it suffices him to assemble attachments and select recipients, the ser-
vice provider’s task is significantly more complex as he must ensure not only
fast delivery of messages but also interoperability between his users’ hetero-
geneous mobile devices [19].

Ensuring interoperability means that each attachment (and the message
as a whole) is potentially adapted so that it satisfies all of the receiving ter-
minal’s constraints. Such constraints specify the maximum message size the
device can receive and decode and other limitations such as the maximal im-
age resolution and the types of media the device can interpret correctly. For
image attachments (for the most part JPEG images taken from the mobile
device’s camera), adaptation will consist in adjusting resolution, compres-
sion parameters, and sometimes even file format, so that the resulting image
is compatible with the receiving terminal’s capabilities. Unfortunately, adap-
tation cannot be devolved to the receiving terminal because the standard
precludes terminals from receiving larger messages than what they can han-
dle as specified by their limitations [8, 9, 35]. Having the sending terminal
adapt the message is also quite impractical as it supposes it has a descrip-
tion of the receiving terminal, which in practice it does not have, and in the
case of multiple recipients, adaptation would be too intensive for a such de-
vice where battery life and computing power are limited. Therefore, adapta-
tion must be performed server-side.

The task of adapting a single message with a few image attachments does
not seem daunting given the relatively small message sizes allowed by the
MMS standard (which we discuss in more details in the next section), espe-
cially when one considers a server-class computer to perform the adaptation.
Even adapting a JPEG image to fit given constraints such as resolution and
file size seems trivial. However, adapting an image to specific constraints is an
intensive process, as estimating efficiently and accurately the file size result-
ing from a given transformation remains a challenge [20,21,39,40]. Adapting
a whole message to fit the receiving device’s constraints so that it maxi-
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mizes overall perceived quality remains a complex operation [41] that we
will discuss at length in this chapter. Finally, one must realize that a ser-
vice provider does not have to adapt the occasional message, but to adapt
potentially very large numbers of messages in a timely fashion. One there-
fore concludes that adaptation must be performed rapidly in order to cope
with high-volume MMS traffic, and that it must be done in a way that yields
a superior user-experience, in particular yielding images with a high per-
ceived quality.

Of course, one may be tempted to resort to trivial adaptation strategies,
for example indiscriminately shrinking images to thumbnails and discarding
troublesome media such as video, but this is clearly unacceptable as users ex-
pect not only the messages to be delivered in a timely fashion, but also to be
adapted in a way that does not incur objectionable degradation. Other sim-
ple strategies, such as forwarding the messages to an e-mail account [10, 30]
or sending an URL by SMS where the users can fetch the message via the de-
vice’s browser [18], will also lessen the user experience by failing to provide
the integration of services one expects from MMS capable devices. There-
fore, the provider must perform the best possible adaptation of messages
in order to maximize the user-experience of his customers, preferably do-
ing so at the lowest possible computational cost.

Minimizing computational cost is a necessity beyond merely ensuring dili-
gent delivery of messages between users. In 2009, MMS traffic grew 48% in
the United States alone, where 34.5 billion multimedia messages were ex-
changed [27]. With a shift towards green technologies and energy-efficient
data centers, it seems unrealistic to hope coping with such a traffic with an
annual growth of nearly 50% using näıve adaptation methods and merely
adding new servers (with all the complications it implies) to meet de-
mand. The solution to mitigate this problem is to use better algorithms that
perform message adaptation in a computationally efficient way without sac-
rificing user-experience.

It is in this context that we propose a novel and computationally effi-
cient method of multimedia message adaptation that explicitly maximizes
user-experience under the constraints of the receiving terminal. In this chap-
ter, we will expose our solution where we propose to not only to max-
imize explicitly resulting quality of adapted messages using an efficient
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algorithm, but to speed-up optimization significantly by the use of predic-
tors. Predictors are fast algorithms that predict the resulting file size and
perceived quality of an image on which were applied transcoding parame-
ters, parameters that describes how to transform the image—for example by
specifying a scaling factor to change resolution and other parameters to af-
fect the level of compression.

This chapter is structured as follows. In the next section, section 2, we
introduce the reader to the environment of multimedia messaging services and
its constraints. In section 3, we discuss the various approaches proposed in
literature to address the problem of MMS adaptation as well as adaptation
of media in other contexts. We also discuss the nature of quality measure
and their essential role in adaptation. We expose the details of our proposed
solution in section 4. Section 5 describes our simulations and presents the
results obtained. We discuss and interpret the results in section 6. Finally,
the chapter closes with section 7, where we summarize our contributions and
present perspectives for future work.

2 The MMS Environment

In this section, we will cursorily introduce MMS messages and the MMS op-
erating environment. We will discuss the challenges it poses for multimedia
messages adaptation.

An MMS message is essentially a MIME e-mail message [13, 17, 23, 42]
as defined by the MMS encapsulation specification [34] where one can at-
tach a number of media files (with acceptable formats defined in [8] and [9]).
The presentation of the media elements can be simple attachments, but
they can be structured using HTML or XHTML [6, 15], or dynamically ar-
ranged in a slide-show-type presentation using Synchronized Multimedia In-
tegration Language, or SMIL [4, 14, 28]. In other words, the MMS standard
provides a number of means to ensure not only delivery of media attach-
ment, but also that they are presented adequately.

Not only MMS-capable devices are heterogeneous (devices can be any
one of the tens of thousands of different models of terminals or even a desk-
top computer), the MMS network itself is composed of a great number of
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different technologies. The mobile devices may use any of the many wire-
less technologies (GSM [2], GPRS, TDMA, CDMA, or 3G [1]) but fortu-
nately, network specificities are abstracted through the Wireless Applica-
tion Protocol (WAP) [33] that provides transport and through the Wire-
less Session Protocol that provides session control (for an introduction to
the transaction-based protocol ensuring the delivery of the messages from
the mobile device to the service provider’s network servers, the reader is di-
rected to [19]).

When a MMS message is sent, it is first processed by the service provider’s
server that determines how to route the message to its recipient. The server
first determines if the recipient is local or if it belongs to another service
provider. In the latter case, the message is forwarded to the recipient’s ser-
vice provider using a MM4 network, the inter-working between MMS service
centers. If the recipient is local, the service provider finds himself with ba-
sically two cases to consider. The first, and usual, case is when a MMS is
sent as a MMS to a recipient on a mobile device. The second case to con-
sider is when an e-mail is sent to a MMS-only address. The third and fourth
cases, (sending an MMS to an e-mail address and sending MMS-like e-mails),
are not very interesting as, unlike the two first cases, they do not need signif-
icant adaptation: as a MMS is essentially a MIME e-mail, it can be send as-is
and left for the e-mail client to display. The two first cases, however, may re-
quire adaptation as sending and receiving device may not have the same ca-
pabilities.

Device capabilities are standardized via capability profiles, or profiles for
short. Table 1 present a simplified view of profiles, where constraints such
as maximum image resolution, maximum message size, and supported im-
age media format are listed. The profiles also specify the type of charac-
ter encodings, presentations, and encapsulation each profile is to support, as
well audio, speech, and video formats for attachments [30], but we will ig-
nore these aspects in this work.

Therefore, when a MMS server receives a MMS message, it first charac-
terizes it, that is, assesses its contents by examining presentation and indi-
vidual attachments, and then determines if adaptation is needed given the
receiving terminal’s capabilities. To do so, the service provider may main-
tain a database associating recipients addresses to their corresponding de-
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Profile Name
Maximum
Resolution

Maximum
Message Size

Image Media

Image Basic 160×120 30 KB
Baseline JPEG,

GIF87a/89a, WBMP

Image Rich 640×480 100 KB
Baseline JPEG,

GIF87a/89a, WBMP

Megapixel 1600×1200 300 KB
Baseline JPEG,

GIF87a/89a, WBMP

Content Rich 1600×1200 300 KB
Baseline JPEG,

GIF87a/89a, WBMP,
SVG

Table 1: Simplified MMS profiles.

vices. The device characterizations are maintained in a database that de-
scribes the devices, beyond MMS capabilities, containing information about
screen resolution and other features, information that could be used, in prin-
ciple, for finer adaptation of the messages. One such database, the Wireless
Universal Resource File (WURFL) maintained by Luca Passani, contains ap-
proximately 11300 devices [37].

Using the database, the provider is capable of devising the best strategy
for message adaptation, whether adaptation or mere pass-through. In some
cases, it may be possible to simply relay the message as-is because its contents
are already compatible (as determined by characterization) with the receiving
terminal (for example, a message using Image Basic sent to a Megapixel-
capable device). In any other case, adaptation must be performed.

3 MMS Adaptation

The goal of MMS message adaptation is to make a message compatible to
the recipient’s receiving device. To do so, we may need to transcode im-
ages, that is to change their resolutions, compression parameters or even
compression format altogether. However, changing compression format may
not be wanted in general. First because most of the images are “natu-
ral images” in JPEG format (as taken from camera phones and JPEG
is generally efficient in this case), and second because the remaining im-
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ages types will likely need to remain in their original formats to retain their
specificities—animations in GIF89a format, for example, will need to be pre-
served. For this reason, and ultimately without loss of generality as we will
discuss in section 6, we will consider here only the case of all-JPEG mes-
sage adaptation.

In subsection 3.1, we discuss prior art and other techniques relevant for
the problem of MMS adaptation. In § 3.2, we discuss the problem of vi-
sual quality assessment and motivate our choice of quality metric, the struc-
tural similarity of Wang et al. In § 3.3, we establish the notation we will
be using in the remaining of this work as well as present a formaliza-
tion of the problem we address.

3.1 Prior Art

A priori, one would think that adapting a Baseline JPEG image [7, 38]
against a given maximal file size is an easy task. One could think it suf-
fices to adjust compression parameters until the desired file size is obtained,
but for JPEG, especially at very high compression, that means introducing
a host of conspicuous artifacts, such as color bleeding and blocking. Blocking
occur when the compression is too aggressive and that DCT patches bound-
aries cease to match their neighbors’ boundaries, and the discontinuities
are visually displeasing [29, 52]. Color bleeding is a side effect of quantiza-
tion in the usually sub-sampled chroma planes [56]. To avoid these artifacts
and yet meet the target file size, one must rather consider a mixed strat-
egy where resolution and compression are adjusted jointly, that is, also
consider solutions where the resolution of the image is lowered but the im-
age is compressed less aggressively, thus avoiding compression-related ar-
tifacts while reducing the overall file size significantly. Therefore, the best
trade-off between resolution change and compression settings is to be found
(while meeting the constraint of the desired file size), where “best” is mea-
sured by an objective quality measure highly correlated with the quality
perceived by a human observer—we discuss the problem of the quality mea-
sure in § 3.2.

Some solutions were proposed to recompress and/or adjust resolution
in the (partially) compressed domain, where operations are performed on
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the DCT coefficients resulting from a partial decompression. In Ridge’s
method [44], the file size resulting from a new compression parameter is
estimated by computing the code-length of the DCT coefficients after re-
quantization. The compression parameter is adjusted (using a binary search)
until the parameter yielding the file size closest to, but not exceeding, the
target file size is found. This method is more efficient than completely de-
compressing and recompressing the image six or seven times (as the main
parameter controlling compression, known as the quality factor, can vary
from 1 to 100, according to the Independent JPEG Group semantics [5], and
log2 100≈7) but it is still very intensive; it is unclear what are the speed-ups
one can expect from such a method. Furthermore, Ridge’s method of bit-
rate adaptation does not consider the case where resolution must be jointly
optimized—although he does propose a (partially) compressed-domain re-
sizing method.

Fast algorithms for resolution changes in the (partially) compressed do-
main were proposed [22, 32, 44]. These methods manipulate the DCT coef-
ficients in order to merge four adjacent 8×8 tiles into a single 8×8 tile, ef-
fectively reducing the resolution by a factor of two in each direction. The
operations necessary for the proposed power-of-two reduction algorithms
are rather complex, and it is unclear how they compare, speed-wise, with
a well-implemented classical pixel-domain filter. Additionally, these meth-
ods do not generalize well to arbitrary resolution changes, that is, scaling
an image by a factor of, say, 0.9 (thus yielding an image with a resolu-
tion 90% of the original in both directions). To summarize, these algorithms
are complex from a conceptual point of view, have unclear speed-up ben-
efits (as speed-ups are reported only relative to the DCT operations, ne-
glecting the remaining operations such as entropy (de)coding, which are not
a negligible part of the operation), and are limited to reductions by pow-
ers of two.

Simultaneously adjusting scaling and quality factor in order to maxi-
mize perceived quality under the constraint of a maximal file size is there-
fore an expensive process if one proceeds by successive transcodings, even
when using an efficient parameter-search method. As we will discuss in sec-
tion 4, the parameter search is further complicated by the fact that the
file sizes of each attachment in a message are added together for the to-
tal message size; and therefore parameters must be optimized jointly across
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all images, leading to a potentially very large number of combination exam-
ined. In this case, it is impractical to proceed to optimization by performing a
very great number of actual transcodings. To speed-up optimization, we pro-
pose to avoid tentative transcodings by the use of predictors [20,21,39,40] for
the file size and quality resulting from applying a scaling factor and a qual-
ity factor to an image. We discuss predictors in § 4.2.

*
* *

Image and media adaptation was, of course, considered before in other
contexts. For example, the problem was considered for mobile browsing
where clients with varying reception bandwidths access media on the web,
and where media is adapted not to satisfy the devices’ display constraints,
but to maximize quality of service as defined by download time [24, 49]. In
these settings, resolution and image quality are sacrificed in order to pro-
vide a fast, responsive browsing experience. In a sense, these solutions address
only a part of the problem we consider, that is, the part where we deter-
mine the largest possible file size to meet a constraint of download time
given a device’s bandwidth, but without consideration for the visual qual-
ity of the images.

Adapting media with explicit maximization of quality was proposed in
Mohan et al. [31,48]. They propose to maximize “content value” (a measure
inversely proportional to distortion) rather directly visual quality, and the
problem is formulated as a rate-distortion optimization problem. After ob-
serving that this particular optimization problem is difficult to solve directly
if all possible transcoding parameters are considered, they adapt Shoham’s
et al. [47] quantization method to their framework, basically using a quanti-
zation of the parameter combination space they examine; that is, they will
consider only a rather small number of precomputed profiles for optimiza-
tion. In the paper, they present six profiles (from full resolution 24 bits image
to “alt-text” description of the image) each corresponding to a generic de-
vice class such as a desktop computer or a PDA.

Others proposed techniques based on message understanding or region of
interest extraction. In [55], Yan and Kankanhalli propose a model of MMS
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adaptation based on “multimedia simplification,” where images are cropped
around their most likely region of interest, and video clipped around their
most salient moment as estimated using hints such as the loudness of its
sound track. Chen et al. [16] propose an approach based on probable element
relevance to simplify and adapt content of Web pages, discarding elements
that are not immediately relevant to the requested topic. However, these
techniques are deemed too computationally expensive to face the demands
of high-volume transcoding, furthermore we may question their applicability
for MMS. Indeed, it is unlikely that users would want their images cropped or
video truncated, much less so if the system fails to provide optimal decisions
every single time—from the users ’ point of view. Also, message simplification
techniques based on relevance are probably inapplicable to an image-only
MMS message containing possibly unrelated images chosen by the user; in a
sense, for the user sending the message, the images are all related.

3.2 Image Quality Assessment

Accurately measuring perceived image quality—a crucial operation in me-
dia adaptation—remains problematic. The peak signal-to-noise ratio (PSNR)
has been used extensively in literature, whether for sound or for image pro-
cessing, but the objective measure of PSNR is not a good estimator of per-
ceived quality of a transformed signal, and will leave us in the need of a bet-
ter measure.

The PSNR is defined from the mean squared error (MSE) between an orig-
inal signalX={xi}

n
i=1 and a reconstructed or transformed signal X̂={x̂i}

n
i=1.

Between an original image X and a transformed image X̂ (of width w and
height h) the MSE is given by

MSE(X, X̂) =
1

wh

w∑

i=1

h∑

j=1

(xij − x̂ij)
2 (1)

and the PSNR by

PSNR(X, X̂) = 10 log10
M2

MSE(X, X̂)
= 20 log10

M√
MSE(X, X̂)

, (2)
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where M is defined as the maximal value one xj can take, for example 255
if 0 6 xj < 256. While other variants define M as the maximum value found

in either X or X̂, using a fixed maximum allows to compare against a class
of signals rather against a single pair. However, from the very formulation
of eq. (1), it should be clear that the PSNR is not invariant to simple trans-
formations that may not affect perceived image quality such as translations,
biases (adding or subtracting a small constant from X), and in the spe-
cific case of images, modifying the colors by either reducing or enhancing
color saturation. In fact, while PSNR will measure an image degradation, en-
hancing saturation and boosting contrast may result in an image more pleas-
ing than the original image.

If PSNR is a poor indicator of image quality because it basically ig-
nores the human psychovisual model, which we aught to use explicitly as
it is user-experience one wants to maximize in our context, we must there-
fore look at other image quality models. There are many models that try
to model the human psychovisual response to images (see [46] for a sur-
vey and analysis), but one has to find the adequate trade-off between ac-
curacy (for example, as measured by a ranking test with the mean opinion
score [43]) and the computational cost (and other logistic considerations) of
the measure. One such measure is the structural similarity (SSIM) of im-
ages [53, 54].

The structural similarity is based on the premise that images that are
non-objectionable transformations of an original image lie nearby the original
image on an image local luminance-contrast manifold. Taking into account
the properties of the proposed structural similarity image space, the distance
between an original luminance image X and a transformed luminance image
X̂ is given by

SSIM(X, X̂) =
(2µXµX̂ + c1)(2σXX̂ + c2)

(µ2
X
+ µ2

X̂
+ c1)(σ2

X
+ σ2

X̂
+ c2)

,

where µX and µX̂ are the means of X and X̂, respectively, and where σ2
X
, σ2

X̂

and σXX̂ , are the variance of X, X̂ and the covariance of X and X̂, respec-
tively. The constants c1 and c2 are added for numerical stability. Wang et al.
further propose the use of a version of SSIM defined at a point, where aver-
ages and variances are computed using a normalized 2D gaussian weighting
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function on a w×w window (with w odd, and w = 11 in [53]). The SSIM at
each of the image locations (i, j), denoted here SSIMij(X, X̂), are pooled to
yield the MSSIM index:

MSSIM(X, X̂) =
1

wh

w∑

i=1

h∑

j=1

SSIMij(X, X̂) . (3)

In this work, we will use the MSSIM as the estimator of perceived im-
age quality.

*
* *

The definition of MSSIM lets us measure the impact of changing compres-
sion parameters on image quality, but does not directly allow for the changes
in resolution. The operation of scaling will affect the pixel-size of an im-
age and therefore makes the direct application of measures like PSNR or
SSIM impossible.

To deal with this situation, one has essentially three choices. Let X be
the original image, and X̂ the transformed image on which the scaling factor
0<z61 was applied (for example, a scaling factor of z=0.3 will yield an
image X̂ with resolution of 30% of that of X). One can therefore compare X
with X̂ by scaling back X̂ at X’s original resolution; one can compare with X
scaled down (but not compressed) at X̂’s resolution; or one can scale both to
an intermediary resolution, say the device’s maximal image resolution. The
first option assesses quality against the original, and in a sense measures the
best possible reconstruction. The second option measures the best possible
reconstruction at the size of X̂, which favors thumbnailing. The last option
measures the best possible reconstruction for a specific receiving device. In
this work, we have opted for the first option. The last option implies that
one has to train a large number of predictors (which we discuss in § 4.2) to
accommodate the various device screen resolutions.

3.3 Formalizing the problem

In the previous sections, we discussed the general setting of the problem
we consider in this work, from the structure of an MMS message to broad
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MMS environment, passing by prior art and a discussion on image qual-
ity assessment. We have given the reader a high-level view of the problem we
address, but in this section, we will formalize the notation, the problem ele-
ments, and the problem itself.

*
* *

A message M={m1,m2, . . . ,mn} is composed of n images mi, each
with resolution R(mi)=(wi, hi), file size S(mi), and original quality factor
QF (mi). A receiving device D, for our needs, is characterized by the maxi-
mum message size S(D) and a maximum resolution R(D)=(wD, hD), both
dictated by the device profile. For example, a device D capable of Image Rich
messages (see Table 1) would report S(D)=300 KB and R(D)=(640, 480).

The transcoding parameters series T ={t1, t2, . . . , tn}, with ti = (qi, zi),
where qi is the new quality factor and 0<zi61 is the resolution scaling fac-
tor, describes the transformations to apply to a message M . The transcod-
ing parameters ti are applied to image mi using function T (mi, ti), which
yields a new image with resolution ziR(mi)=(ziwi, zihi) that is compressed
with quality factor qi with file size S(T (mi, ti)).

Let Q(mi, T (mi, ti)) measure the quality of transcoded image T (mi, ti)
relative to original image mi. As we discussed in § 3.2, whenever the reso-
lution of the transcoded image differs from the original (that is, whenever
z 6=1), the transcoded image is scaled back to the original resolution for com-
parison.

We are therefore interested in finding the optimal transcoding parameters
series T ∗ that maximizes an objective function Q(M,T ) (which we define and
discuss in § 4.1), that is, to solve

T ∗ = arg max
T ∈ T (M,D)

Q(M,T ) (4)

where T (M,D) is the set of all transcoding parameter series T that satisfies
the constraints

n∑

i=1

S(T (mi, ti)) 6 S(D) (5)
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and

zi max(wi, hi) 6 WD ,

zi min(wi, hi) 6 HD ,
(6)

for i = 1, 2, . . . , n.

Eq. (4) expresses a generic objective function which we want to be in-
dicative to perceived quality. Eq. (5) states that the sum of the transcoded
images file sizes must be smaller or equal to the maximum message size for de-
vice D, while eqs. (6) express orientation-independent resolution constraints
where the image can fit the device maximum resolution D in either por-
trait or landscape orientation. Let us note that eq. (5) ignores the cost of the
presentation of the message which should be normally included in the opti-
mization. To reflect the cost of the presentation layer (and of the rest of the
message itself including headers), one could rewrite eq. (5) by replacing S(D)
with S(D)−P (M,D), where P (M,D) is the cost of the presentation of mes-
sage M on device D, but we do not address the problem of adapting the
presentation in this work.

4 Proposed Solution

In this section, we present the details of our proposed solution. In § 4.1, we
discuss the choice of the objective function for the problem of multipart mes-
sages. In § 4.2, we discuss the need for predictors to speed-up optimization
and we describe the predictors used in this work, the JQSP predictor. We also
introduce the concept of oracular predictors and discuss their expected prop-
erties in relation to our proposed solution. In § 4.3, we revisit constraints
and objective function, proposing modification to accommodate predictors.
We discuss the optimization algorithm used to maximize the objective func-
tion in § 4.4. Lastly, we present and discuss comparative adaptation algo-
rithms in § 4.5.

4.1 Objective Function

In § 3.3, we have proposed to use an objective function Q(M,T ) that mea-
sures the quality of the message M transcoded using the transcoding param-
eters series T , without defining it. In § 3.2 we discussed image quality metrics
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and we chose SSIM (or more exactly, MSSIM, as given by eq. (3)), as a qual-
ity metric. However, as SSIM is essentially a local correlation factor between
original and distorted images, it yields values on [−1, 1], but the useful range
will be [0, 1], where 0 already corresponds to a perfectly uncorrelated im-
age (and −1 would correspond to an anti-correlated image). Constraining
the quality measure Q(mi, T (mi, ti)) on [0, 1] will allow us use the objec-
tive function

Q(M,T ) =
n∏

i=1

Q(mi, T (mi, ti)) . (7)

The proposed objective function in eq. (7) presents only one of an infinite
number of possible objective functions, but several aspects makes it especially
suitable for the task considered. If maximizing eq. (7) is not the same as
maximizing average quality of the transcoded images, the expected average of
the Q(mi, T (mi, ti)) increases as eq. (7) increases, and the expected variance
necessarily decreases [26,50,51]. While maximizing eq. (7) is not the same as
maximizing the average quality of the transcoded image, it will still prevent
choosing solutions where there is a significant difference between the best
image and the worst, thus forcing balanced solutions.

4.2 On Predictors

However, as we mentioned in § 3.1, actually performing a transcoding with
given transcoding parameters to examine resulting file size and image qual-
ity is an extremely expensive process, and therefore it is impractical to
maximize eq. (7) by performing an exponentially large number of transcod-
ings. Rather than computing S(T (mi, ti)) and Q(mi, T (mi, ti)) exactly by

performing a transcoding, we will use predictors, Ŝ(mi, ti) and Q̂(mi, ti),
both formulating their prediction from the characterization of the image
mi (such as its original file size S(mi), quality factor QF (mi), and resolu-
tion R(mi)) and the transcoding parameters ti.

In previous works we have proposed such predictors [20,21,39,40] but in
this work, we will use the predictors presented in [21], to which we will re-
fer here as the JQSP, the JPEG Quality and Size Predictor. The salient point
of the proposed predictors is that predictions are learned, rather than en-
gineered, from a large image corpus on which was applied a large number
of transcodings. The specific experimental conditions and the constitu-
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tion of the corpus are detailed in section 5 and in [21].

However, if the file size and quality predictors from [21] are well behaved,
only using these predictors would validate the predictors themselves more
than our proposed solution for MMS adaptation, of which we want to show
the efficiency and stability. To establish the upper-bound of obtainable qual-
ity for the proposed predictor-based algorithm, in addition to the JQSP, we
will use oracular predictors that return the exact file size and quality re-
sulting from applying transcoding parameters to a given image. Of course,
the oracular predictors perform their pythian prognostication by actually
transcoding the image and observing the exact resulting file size and qual-
ity.

The oracular predictors are especially well suited to characterize the
graceful degradation—or lack thereof—of the proposed algorithm to predic-
tor error. Since they are exact, oracular predictors can be used to simulate
predictors with any error characteristics. In the experiment we performed,
described further in section 5, we used, in addition to the JQSP and the ex-
act oracular predictor, predictors with gaussian relative errors of 1%, 2%, 5%,
and 10%, 95% of the time. Relative error is computed as |x̂− x|/x, for ex-
act value x and predicted value x̂.

4.3 Objective Function and Constraints, Revisited

Using the predictors, we re-write the objective function eq. (7) for message
M and transcoding parameters series T as

Q̂(M,T ) =
n∏

i=1

Q̂(mi, ti) (8)

where Q̂(mi, ti) formulates a prediction on the resulting quality of image
mi on which were applied the transcoding parameters ti. Constraints will
be modified to accommodate predictors. The size constraint, eq. (5), will be
re-written as

n∑

i=1

Ŝ(mi, ti) 6 S(D) , (9)

where Ŝ(mi, ti) formulates a prediction on the resulting file size of im-
age mi on which were applied the transcoding parameters ti. However, the
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constraints of eqs. (6) are left unchanged, as there is no uncertainty in the re-
sulting image resolutions.

Then the problem becomes to find the optimal predicted transcoding
parameter series

T̂ ∗ = arg max
T̂ ∈ T̂ (M,D)

Q̂(M, T̂ ) , (10)

where T̂ (M,D) is the set of all possible transcoding that (probably) satisfy

the constraints of eqs. (9) and (6). The formation of T̂ (M,D) is discussed in
§ 4.4 and section 5.

4.4 Optimization Algorithm

To solve eq. (10) (or eq. (7)) efficiently, we will need an efficient algorithm,
as it is impractical to test a combinatorial number of parameters to find the
optimal transcoding parameter series. Fortunately, the optimization prob-
lem can be formulated as a distribution of effort problem [25], a classical
problem in operations research with known efficient algorithms, where a lim-
ited number of resources must be distributed at a number of points in or-
der to maximize a gain function under given constraints. Here the resources
spent correspond to the file size of images, the total budget of which is de-
termined by the maximum message size for the target device, and the gain
function is the overall message quality as estimated by the objective func-
tion eq. (8), under the additional constraints of satisfying the receiving de-
vice resolution.

The particular form of eq. (7) (and eq. (8)) makes the problem amenable
to efficient optimization algorithms [36], and in particular to dynamic pro-
gramming or A∗ search. In the A∗ formulation, the problem of distribution of
effort is usually modeled as a graph [25] where, after having reached an inter-
mediate state si (where attachments up to attachment mi were solved), the
possible successor states of si, the si+1,j , if reachable (transiting from state si
to state si+1,j does not violate the constraints), are connected by edges corre-
sponding to the possible transcoding operations of attachment mi+1. There-
fore, the edge between the state si and state si+1,j is labeled by a transcod-
ing (qi+1,j, zi+1,j). One solves for the best path in this graph, the path that
maximizes the objective function while being admissible, that is, satisfy-
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ing all constraints.

To minimize optimization time, one must therefore limit the number of
successor states to be examined, that is, minimize the size of T̂ (M,D). In

particular, T̂ (M,D) cannot contain an infinite number of elements. This im-
plies that the set of all tuples (qij, zij) for attachment mi considered must
be quantized to a limited, ideally rather small, number of possibilities. How-
ever, it is unclear how one would prune combinations of q and z when consid-
ered jointly; and in our experiments, after the initial quantization discussed
in section 5, we limited ourselves to pruning the set of possible transcod-
ing parameters for each attachment mi by excluding all transcoding (prob-
ably) exceeding the device constraints, that is, we eliminated all transcoded
with a predicted file size exceeding the maximum message size and all scal-
ings exceeding the resolution of the device—all z such that zR(mi)>R(D).

After optimization, the algorithm yields T̂ ∗, the (probably) best transcod-
ing to apply to message M to satisfy the constraints of device D. However,
it may be that the predicted transcoding parameter series produce a mes-
sage that exceeds the constraints of the receiving device. If the message ex-
ceeds the constraints of the receiving device, a scaling factor 0≪α<1 is ap-
plied to the maximum message size and optimization is performed again. We
rewrite the size constraint of eq. (9) at the r-th retry as

n∑

i

S(T (mi, ti)) 6 αr S(D) . (11)

The initial optimization, with r = 0, yields eq. (9). In our experiments, we
set α=0.9.

4.5 Comparative Algorithms

To compare results from our proposed algorithm, we will use algorithms in-
spired from the previous literature (which is rather thin for this particular
topic of MMS adaptation). The first algorithm, “successive profiles”, in-
spired by the fixed adaptation strategy of Mohan et al [31], will apply suc-
cessively more restrictive profiles to all images until the transcoded message
satisfies the receiving device constraints. For this algorithm, a profile de-
fines both the maximum resolution of images and the quality factor with
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Resolution Quality Factors

640×480 90, 80, 70, 60
320×240 90, 80, 70, 60, 50
160×120 90, 80, 70, 60, 50, 40

Table 2: Combination of resolution and quality factors forming the profiles used
for algorithm “successive profiles.”

which they will be compressed. For example, a profile could limit the reso-
lution to 640×480 and impose a quality factor of 90. The next profile, more
restrictive, could impose the same resolution but a quality factor of 80, and
so on. The profile considered for this algorithm are shown in table 2. We
will see, in section 5 that it is not helpful to have a great number of pro-
files.

The second comparative algorithm, “successive scaling”, will only reduce
the images’ resolution while using a fixed, but otherwise reasonable, qual-
ity factor of 85, until it yields a message that satisfies the device constraints.
The algorithm proceeds as follows. First, for each image mi, the largest al-
lowable scaling factor 0<zi61 such that ziR(mi)6R(D) is found: in order
words, the image is initially scaled to the maximum resolution acceptable
for the device. Adaptation proceeds by adjusting, at iteration r = 1, 2, . . .,
a global parameter βr (initially β1 = 1) that is applied to every image so
that the scaling factor, at step r, for image mi, is βr zi, yielding an image
with resolution βr ziR(mi). Assuming the scaling factor controls quadrati-
cally the file size (as a scaling of z does not yield a file O(z) times smaller,
but O(z2) times smaller), a reasonable adjustment βr+1 (for r>1) is given
by

βr+1 = α2

√
S(D)

Sr

, (12)

where α2 is an dampening factor (set to 0.95 for our experiments) to en-
sure that the algorithm stops rapidly after only a few iterations, and Sr is
the size of the message obtained at step r. The adaptation terminates when
a message satisfying the device constraints is produced.

Both comparative algorithms heuristically maintain a balance between
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image scaling and quality factors to produce satisfactory message quality—
one by using predefined profiles, possibly tried in a decreasing expected mes-
sage size order, the other by adjusting only resolution but keeping a good
quality using a fixed quality factor. One could think of other heuristic adap-
tation strategies, for example, fixing the images’ resolution to at most R(D)
(leaving smaller images’ resolution unchanged) and increase the compres-
sion aggressiveness by progressively lowering the quality factor until a mes-
sage meeting the maximum message side is created. This would lead to mes-
sages with images with very conspicuous blocking artifacts (resulting from
an aggressive JPEG compression), even more so as the number of attach-
ments grows and that the limited message budget is split across the many
images.

5 Simulations & Results

In this section, we detail our experimental setup. In § 5.1, we discuss the im-
age corpora used for the training of the predictors as well as for the formation
of the test MMS messages. In § 5.2, we describe the adaptation experiment
itself, the various operating conditions including a description of the test ma-
chine, and we present the results thus obtained.

5.1 Image Corpora, Predictors, and Test Messages

The image corpus used to train the JQSP is formed of 70 000 JPEG im-
ages obtained from the web in 2008, using a crawler using high-profile web
sites as origination points [39]. Mainly because of confidentiality, it is im-
possible to sample messages from a MMS provider’s traffic, and we deemed
that good surrogate for MMS traffic would be a web crawler sampling web
sites with user-submitted content. Ideally, a service provider would repli-
cate the experiments in [20, 21, 39, 40] with a much larger number of im-
ages sampled from their actual traffic, possibly retaining information about
the distribution of the number of attachments, average size and quality fac-
tor of original images, etc., none of which, most unfortunately, we had ac-
cess to at the time of writing.
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Each of the 70 000 images was subjected to 100 transcoding (corre-
sponding to all combinations of all quality factors q ∈ {10, 20, . . . , 100} and
scalings z ∈ {0.1, 0.2, . . . , 1.0}) yielding 7 000 000 examples. Scaling was per-
formed using a Blackman filter for its desirable properties [12], and both re-
sizing and compression were performed using the Magick++ library [3]. The
training procedure for JQSP is described in [21]. The JQSP predictor is de-
signed to predict the optimal transcoding parameters (q, z) given a target
file size, and not directly predict file size from transcoding parameters, con-
trary to other predictors presented in [39,40].

The target file sizes chosen to query the JQSP were selected so that they
were spread 5% apart in relative size for a given attachment; thus greatly
limiting the number of parameters to examine without jeopardizing qual-
ity of adaptation. The oracular predictors where constrained similarly to the
training conditions of the JQSP predictor, that is, limited to quality factors
q ∈ {10, 20, . . . , 100} and scalings z ∈ {0.1, 0.2, . . . , 1.0}); infeasible transcod-
ings (file sizes or resolution exceeding the device constraints) were pruned
from the optimization.

The proposed algorithm used α=0.9 in eq. (11), that allows retries if op-
timization fails to produce a message that satisfies the device constraints.
The comparative successive profile algorithm used the profiles listed in ta-
ble 2. The successive scaling method, described in § 4.5, used α2=0.95. Both
constants α and α2 were set arbitrarily to reasonable, yet likely non-optimal,
values.

Test examples were also obtained from a web crawler but at a later time,
in the fall of 2010 [41]. The resulting corpus contains 370 000 JPEG image
images. For each of the 220 MMS test messages, five images were drawn at
random from this second corpus, yielding messages with an average size of
1.4MB and average image resolution of 1140×838.

5.2 Adaptation Experiment

For the experiments, the target profile chosen was Image Rich (images lim-
ited to 640×480 and message size to 100KB, see table 1), thus requiring an
average 15 : 1 reduction ratio for the simulated messages. This difference in
original message size and target was deliberate as it seemed that consider-
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ing cases where only a moderate adaptation of, say 2 : or 3 : 1 would not
prove our point as strongly.

The predictors used for the experiments were the JQSP predictors, an (ex-
act) oracular predictor, and four additional oracular predictors with 1%, 2%,
5%, and 10% relative error 95% of the times, respectively.

On the messages formed, we proceeded to their adaptation by our pro-
posed algorithm using the various predictors and by the two comparative al-
gorithms, and measured key indicators of performance, namely capacity, the
propension of the algorithm to use all of the available message budget; ob-
jective function, to measure how the algorithm maximizes overall quality
as measured by eq. (7) (as it was observed after transcoding and not pre-
dicted, therefore eq. (8) was not applicable); average image quality as a mea-
sure of balance in the solutions; and lastly the number of actual transcoding
performed by the various methods and the wall-time needed for adapta-
tion. The test machine was an Intel T9600 64bits CPU at 2.8 GHz running
Ubuntu Linux 10.04 LTS, the current version at the time of writing [41].
Scaling was performed using a Blackman filter [12] and transcoding per-
formed using Magic++ [3] in single-threaded mode.

The capacity, the portion of the maximum message size used by the
transcoded message, is shown for the different predictors and algorithms in
Fig. 1. The objective function score for the different algorithms are shown in
Fig. 2 and the average SSIM for each attachment is shown in Fig. 3.

Fig. 4 shows the objective function scores resulting from individual mes-
sages, each curve sorted in ascending order separately. The curves do no
allow to compare the relative performance of adaptation algorithms on a
same message, but do render the general behavior of the different algorithms
and predictors. Fig. 5 presents a similar graph for the average message SSIM.

Fig. 6 shows the times in seconds for the dynamic programming algorithm
using the JQSP predictor, the successive scalings and successive profiles algo-
rithms for our single threaded implementation on our test machine described
previously. Oracular times are not shown, as not applicable to an actual im-
plementation (and since a great number of actual transcoding are performed,
we have times two orders of magnitude greater). Lastly, Table 3 shows the av-
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Figure 1: Message capacity distributions, by algorithms and predictors.

Oracle 1% 2% 5% 10% JQSP Profiles Scaling
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: Objective function score distributions, by algorithms and predictors.

erage number of transcodings and retries (the number of times the algorithm
must restart with new constraints) for different algorithms. Let us note that in
our experiment, the fail rate is zero, as all transcodings are eventually success-
ful. For a transcoding to fail, we would need to have an image large enough
so that with a quality factor of 10 and a scaling of 10% it still exceeds the de-
vice constraints, and there were no such images in the test messages. If such
a case would arise, one must think of a contingency method, possibly drop-
ping attachments or splitting the message across many messages—issues we
do not address in this work.

6 Discussion

One surprising thing, shown in figs. 1 and 2 is that is not sufficient to
merely maximize capacity to achieve high adaptation quality; but that ca-
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Figure 3: Average SSIM distributions, by algorithms and predictors.
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Figure 5: Average SSIM by message, by algorithms and predictors.
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Figure 6: Message adaptation times distributions, by algorithm.

Optimization Transcodings Retries Objective
Algorithm Function

Oracle 5.00 0.00 0.35
1% 6.03 0.21 0.34
2% 6.54 0.31 0.33
5% 7.19 0.43 0.32
10% 8.25 0.65 0.30
JQSP 5.55 0.13 0.27

Profiles 33.36 5.67 0.22
Scalings 15.02 2.00 0.23

Table 3: Compared Averages of algorithms for a message of 5 attachments.
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pacity must be maximized as a side-effect of quality-aware optimization. The
great number of profiles used in the successive profiles algorithm and the ef-
ficient parameter search in the successive scaling algorithm allows them to
get close to the capacity, but as neither explicitly maximize message quality,
merely attempting to do so heuristically, the resulting quality is, in fact, in-
ferior to our proposed method, all predictors considered.

Let us remark that maximizing eq. (7), the products of SSIM scores, for a
message is not the same as maximizing the average SSIM score for the same
message (although as discussed in § 4.1, both are strongly linked); but fig-
ures 4 and 5 confirm that the two are highly correlated, in particular, the
ordering of algorithms and predictor pairs is preserved.

Figs. 2 and 5 show that the JQSP predictor behaves close to the 10%
relative oracular predictor (probably closer to a 15% relative error predic-
tor), and figs. 4 and 5 show that the predictor-based method using explicit
quality maximization yields a quality significantly higher than the succes-
sive scalings and successive profiles algorithms. These figures illustrate that
proposed algorithm is capable of graceful degradation with increasing pre-
dictor error, as quality and capacity decrease gracefully with increasing er-
ror rather than abruptly.

*
* *

The algorithmic complexity of the optimization methods is also in-
teresting to study. The complexity of both the successive profiles and the
successive scaling algorithms is dominated by the number of actual transcod-
ings (see table 3), and their internal operations are negligible, almost null.
Indeed, the decision part of the successive profiles algorithm reduces to a ta-
ble look-up where profiles to apply are fetched and to determine whether
or not an image is to be resized. For the successive profiles, the most com-
plex part, excluding transcodings, is the computation of eq. (12) which
only involves a handful of floating-point operations: nothing daunting for a
server-class computer. For the successive profiles algorithm, the number of it-
erations is upper-bounded by the number of profiles in its table, while the
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successive scaling will converge quadratically fast, in a few iterations, be-
ing a Newton-Raphson-like method.

The cost of explicit optimization using dynamic programming is essen-
tially O(n |T (m,D)|2) where n is the number of attachments and |T (m,D)|
is the expected number of transcodings for images m (therefore T (m,D) de-
notes the set of all the possible transcodings of image m satisfying the
device D). Solving using a blind depth-first search leads to complexity
O(|T (m,D)|n), but using A∗ with pruning (for example, cutting off search
whenever a partial solution already exceeds constraints or does worse al-
ready than the best solution so far, which in turn implies that combina-
tions are examined in an order that favors aggressive pruning), still leads
to an algorithm with an exponential run-time worst case, but using admis-
sible pruning, it can be made polynomial-time in O(|T (m,D)|δ), where δ is
a constant that does not depend on n but rather in the average depth ex-
plored [45, p. 85].

Fig. 6 shows that the run-time of explicit maximization is offset by the
gain in fewer transcodings, as to be much faster, on average, with an av-
erage of 5.55 transcodings per message, than the successive scalings algo-
rithm with an average of 15.02, and than the successive profiles algorithm
with an average of 33.36, as shown in Table 3. The slight overshooting of
the file size prediction for the JQSP predictor keeps the proposed algo-
rithm from achieving maximal capacity, while still producing higher quality
messages than the comparative algorithms, with the side-effect of keep-
ing the number of retries lowest after the oracular predictor; a predictor that
undershoots significantly would imply far more transcodings before reach-
ing a solution that satisfies the device constraints.

Furthermore, the number of predicted transcoding parameters examined
during optimization plays a non-negligible role in the proposed method per-
formance. Even if the optimization algorithm is efficient, a great number of
predicted transcoding parameters per image means a larger graph to explore
and necessarily increased run-time, even with pruning, as run-time grows (at
least) quadratically in the number of predicted transcoding parameters [36].
It then becomes a trade-off between the precision of the predicted transcod-
ing and run-time. The successive scalings and successive profiles algorithms
are also subject the speed/quality trade-off, but the results are far less in-
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teresting. The successive profiles algorithm could use fewer profiles, but al-
ready the resulting quality is inferior to the proposed algorithm. The same
is true for the successive scalings method, which could start with an aggres-
sive scaling factor of, say, β1 = 0.8, but that would result only in even worse
quality.

*
* *

The predictor-based solution we propose is not limited to JPEG-only
messages. It can be generalized to any type of media by introducing new pre-
dictors for the desired media types. One could propose predictors for PNG,
GIF, voice audio formats, etc., and the general framework of the solution
would remain exactly the same. File size and resolution constraints are un-
changed, except for the fact that the predictors now accommodate other
media types; however, it may be necessary to add other constraints. Cer-
tainly one would need to consider the case where the compression format it-
self is to be changed.

The presentation itself, ignored in this work, can most likely be mod-
eled as supplementary constraints or with minor changes to the optimization
algorithm. For example, one could enforce proportionality (i.e., all pictures
maintain relative size) by sharing the scaling factor across all images, as the
successive scaling algorithm does. If the new constraints are not amenable
to dynamic programming (as not all types of constraints or objective func-
tions can be used [11]) one will need to use an A∗ search which is, in many
regards, a more general solution than dynamic programming.

7 Conclusion

In this work, we proposed a solution to MMS adaptation where the prob-
lem is explicitly modeled as an optimization problem where the goal is to
maximize image quality (with MSSIM as a measure of user-experience) un-
der the constraints dictated by the receiving mobile terminal. However, the
novelty of our solution resides in the fact that we propose the use of predic-
tors to speed-up optimization significantly without jeopardizing the result-
ing quality of adapted messages. We have shown, also, that the proposed
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method degrades gracefully with increased predictor error and that, overall,
it performs much better, even with rather large predictor errors, than algo-
rithms found in and inspired by the existing literature.

The proposed objective function, based on the structural similarity
(MSSIM), is necessarily a simplification of the user-experience. Future work
could explore how to model user-experience more appropriately and deter-
mine what objective functions would best replace eq. (7) as a measure of the
goodness of the adapted message. One could also consider the use of bet-
ter predictors, for example [40], which was not available at the time of writ-
ing [41]. Of course, the more accurately one can predict resulting file size
and quality, the best the adaptation can be. Not only can we find better so-
lutions, we can also use this knowledge to further prune optimization and
obtain a faster adaptation algorithm.
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