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Abstract — Space-filling curves are well known for
preserving pixel locality when they are used as paths to
traverse 2D image data. Some prediction-based compression
algorithms make use of these curves to ensure high pixel
values correlation during 2D image data traversal. This
work explores the distribution of pixel correlation induced
by all possible space-filling curves on 2D image data and
demonstrates that commonly used curves, such as the
Hilbert or the Peano curves, do not provide the best possible
pixel correlation for natural photographic images. Using
experimental data collected on a large set of such images, we
demonstrate that row-prime ordering is the best choice for
preserving maximum pixel values correlation while reducing
the dimensionality of 2D natural photographic image data.

Keywords — space-filling curves; pixel correlation; pixel
locality; image compression; image processing

I. INTRODUCTION

Mapping 2D image data to a one-dimensional sequence
of pixels is a common operation in image processing. A
simple approach to reduce the dimensionality of pixel data
is to concatenate, one after another, all the pixel rows
(scanlines). In natural images, neighboring pixel values
are usually highly correlated. With a simple concatena-
tion, the resulting reordered pixels suffer pixel values
discontinuity on scanline changes, which is not optimal
for prediction-based compression algorithms that require
high pixel correlation to achieve better compression ratios.

Space-filling curves (SFCs) [1] provide pixels traversal
paths that preserve pixel locality, improving the cor-
relation of pixel values over the scanlines concatena-
tion approach. Some prediction-based compression algo-
rithms [2]–[4] use well-known SFCs, such as Hilbert’s [5]
or Peano’s [6], while other studies have optimized pixel
values correlation using adaptive SFCs [7]–[13] but these
adaptive approaches are data-dependent and require extra
coding and storage.

This work investigates the distribution of pixel values
correlation induced by data-independent SFCs, and which
SFCs provide the best possible pixel values correlation for
natural photographic image traversal.

II. METHODOLOGY

To quantify the pixel values correlation property of
space-filling curves, we accumulated the error energy for
each possible Hamiltonian paths on each pixel subsets
(patches) of different sizes for 100 natural photographic
images. Fig. 1 shows one of the images used in this work.

A. Images and Patches

To ensure that our results were color-component and
resolution independent, each 24-bit image in the test set
was processed at three different resolutions: 5202×3465
(original), 2601×1733 (half), and 1300×866 (quarter).
Down-sampling was performed using ImageMagick’s
Blackman filter. The test set therefore comprises 300
images, for a total of 900 8-bit image planes.

In what follows, a patch is a n×n pixel region of an
image, comprising all color planes. For this work, we
considered patches of sizes 4×4 to 6×6. To not only
generate a great number of patches but also, and maybe
more importantly, to guard against alignment effects, all
distinct n×n patches were extracted from an image, for
a total of (x− n+ 1)×(y − n+ 1) patches for a x×y
pixel image.

Figure 1: One of the natural photographic images used
for this experiment (Seljalandsfoss, Iceland).
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Figure 2: Some 4×4 space-filling curves. S© indicates the
starting pixel, and E© the ending pixel.

B. Hamiltonian Paths

A Hamiltonian path on a grid graph, or for our purpose,
a path, is a path that visits every node exactly once. For
our application, a node is a pixel, and the connectivity
of the graph is limited by N-S-E-W neighbors within the
n×n pixel patch. Fig. 2 shows examples of such paths.

While a number of previous studies limited themselves
to a single path (either Hilbert or Peano) [2]–[4], or to a
small number of preselected paths [7]–[10], or computed
them in order to explicitly minimize a cost function [11]–
[13], we intend to find the distribution of energy induced
by all possible directed Hamiltonian paths in a n×n
grid graph. Because the number of possible paths grows
rapidly [14]–[16], we limited the experiment to grid
graphs, or patches, of sizes 4×4 to 6×6.

C. Estimating Energy Induced by a Path

As an estimator of energy compaction under a wide
variety of transforms [17], [18, Ch. 3], we used the sum
of the squared difference between pixels along a path.
The energy for a n×n single color component patch c
unwound by path h is given by

E(h, c) =
n2−2∑
j=0

(
chj+1

− chj

)2
, (1)

where hj is the coordinate of the jth pixel along the path
h. We accumulate the energy of every patch p of every
color components c of every image i in the image test set

Size Min Hilbert Max Range

4×4 1.54× 1012 1.56× 1012 1.57× 1012 3.28× 1010

5×5 2.46× 1012 2.49× 1012 2.52× 1012 5.84× 1010

6×6 8.27× 1012 8.64× 1012 9.04× 1012 7.72× 1011

Table I: Total energies on full resolution images.

Figure 3: The distribution of energies induced by paths
over 4×4 �, 5×5 �, and 6×6 � patches, on full
resolution images.

I . The total energy over the test set is

E(h, I) =
∑
i∈I

∑
p∈i

∑
c∈p
E(h, c) .

III. RESULTS

We estimated the energy induced by all SFCs on
patches of sizes 4×4 to 6×6 over our 100 image test
set at three different resolutions, resulting in the scan, for
each path, of 900 8-bit image planes.

Fig. 3 shows the distribution of energy of all curves of
sizes 4×4 to 6×6 over all the images in full resolution.
The energies are normalized between zero and one, with
zero corresponding to the lowest energy observed for a
given experiment, and one to the highest. The histogram
is then normalized in height so that the surface is one—a
probability distribution. Figs. 4 and 5 show, respectively,
the distributions of energy over all patches of sizes 4×4
and 5×5 over the three image resolutions, with the same
normalization as fig. 3. We see that the distribution is
very nearly resolution-independent, which is a desirable
property, as it would indicate that the choice of path
will not depend strongly on the resolution of the image.
Figs. 6 and 7 show where the best and Hilbert curves are
located relative to the distribution of energy. We see that
the Hilbert curves perform very nearly like the average
of curves. Since the Hilbert curve is well defined only
for grid graphs of size 2n×2n (with n > 2), the curves
retained for testing are necessarily different. Fig. 8 shows
the Hilbert curves retained for comparison. The energies
are summarized in table I.



Figure 4: The distribution of energies induced by paths
over 4×4 patches, from quarter �, half �, and full
resolution � images.

Figure 5: The distribution of energies induced by paths
over 5×5 patches, from quarter �, half �, and full
resolution � images.

Figure 6: The location of various curves on 5×5 patches.

Figure 7: The location of various curves on 6×6 patches.

IV. DISCUSSION

Figs. 6 and 7 show the relative energies induced by the
selected curves. The best curve, row-prime ordering, is
shown far left while the variants of Hilbert’s curve (shown
in fig. 8) are found near the center, indicating that Hilbert
curves perform only like the average SFC in terms of
induced energies. This is unexpected because the row-
prime SFCs provide less pixel locality than popular SFCs
such as the Hilbert curve or the even the Peano curve, but
they do maximize correlation between pixels along their
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Figure 8: Hilbert curves retained for figs. 6 and 7.
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Figure 9: Best two paths at 4×4 patch size for all
resolutions. S© indicates the starting pixel, and E© the
ending pixel.

Average Energy Per Pixel
Data Set (count) Horiz. Vert. Relative Diff.

Kodak True Color (24) 23.62 26.06 9.36%
Our Data Set (100) 33.67 34.30 1.84%

Flickr Faces (70 000) 31.13 27.77 -10.79%
Open Images Ex (478 215) 122.78 124.34 1.25%

Table II: Comparison of average horizontal and vertical
energies per pixel.

paths, at least as far as our extensive image test set is
concerned.

One may also note that an effect of eq. (1) is that the
energy is invariant in the direction of the path, and that,
we essentially use undirected paths. Indeed, if we reverse
the direction of the path, we compute the same squared
differences along the way. Therefore, the selection of the
best curves are up to a direction. However, we still need
to differentiate orientation and mirroring (see fig. 9).

One may question if the effects observed are an artifact
of the data set used. While we have yet to run the
test with all the curves on larger data sets, we have
measured that the vertical energy (column-prime) and
horizontal energy (row-prime) shows approximately the
same relative difference and preference to row-prime
order. Table II shows the summary of these experiments.
One notable difference is the Flickr Faces data set, which
is exclusively composed of tightly-framed faces. There is
otherwise no reason to think that our data set is different
in any significant way.

Figs. 6 and 7, and also figs. 4 and 5, hint that energy is
somewhat normally distributed if we consider all paths—
we may even conjecture that as the patch size grows, the
distribution will converge to a binomial distribution. That
will be the object of further investigations.

V. CONCLUSION

While we may have the intuition that choosing a
Hilbert-like SFC maximizing locality will also maximize
correlation between successive pixels along its path, our

experiment shows that it is not the case. Indeed, we have
shown that row-prime (or column-prime in some cases)
ordering gives better correlation on natural photographic
images (such as fig. 1) than most other curves, and in
particular, better than the Hilbert curve that performs only
like the average of all possible curves for a given patch
size. In spite of the appeal of regular and recursively
defined SFCs such as the Hilbert or Peano curves, it may
well be preferable to use a simpler, easier to implement,
row-prime order curve, or one of its variations.
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