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Abstract

The problem of computing the minimum redundancy codes as we observe symbols one by one
has received a lot of attention. However, existing algorithms implicitly assumes that either we
have a small alphabet — quite typically 256 symbols — or that we have an arbitrary amount of
memory at our disposal for the creation of the tree. In real life applications one may need to
encode symbols coming from a much larger alphabet, for e.g. coding integers. We now have to
deal not with hundreds of symbols but possibly with millions of symbols. While other algorithms
use a number of nodes proportional to the number of observed symbols, we here propose one
that uses a number of nodes proportional to the number of frequency classes, which is, quite
interestingly, always smaller or equal to the size of the alphabet.

1. Proposed Algorithm: Algorithm M

Of all compression algorithms, it is certainly Huffman’s algorithm [3] for generating minimum redundancy
codes that is the most widely known. The general problem consists in assigning to each symbol s of a certain set S a

binary code with an integer length that is the closest possible to —lg( p(S)] , where p(s) is an estimate of the
probability of symbol s, and lg x is a shorthand for log, x. Huffman’s algorithm generates a set of codes for which
the average code length is bounded by the interval [H(S),H(S) + p+0.086) , where p is the largest probability of all
symbols s in S [8, p. 107]. While being rather efficient, this algorithm has several practical disadvantages.

The first is that it is a static code. Huffman’s algorithm precomputes the code book C after having obtained
an estimate for p(s) for all s in S, and then the compression proper uses the same code book C for all the data, which
sometimes can lead to compression inefficiencies if the data in the sequence are not i.i.d., that is, differs
substantially from p(s). One must not forget that we are using p(s) instead of a more appropriate p,(s), which depends
on t, the ‘time’ or the position in the sequentially processed data. If the code book was adaptive, one might capture
some information leading to a better approximation of p«(s) which in turn leads to possibly better compression.

The second major disadvantage is that the algorithm must see all the data before one can actually perform
the compression. Since we are trying to estimate p(s) for a data set composed of symbols out of S, we must scan all
the data in order to get a good estimate. Often, it is quite impractical to do so. One might not have wanted space to
store all the data before starting compression or, as it is often the case in communication, ‘all the data’ might be an
illusive concept. If we estimate p(s) out of a small sample of the data we expose ourselves to the possibility that the
estimate of p(s) out of a small sample is a bad approximation of the real p(s).

The memory space used by Huffman’s algorithm (whether the implementation is memory-efficient or not)
is essentially O(n), where n is the number of symbols in S, which can lead to problems when 7 is large. In textbooks,
one never finds an example of code books generated by Huffman’s algorithm with more than 256 symbols. In this
context, the ‘worst case’ code book consists of assigning a code to each of the 256 possible bytes. In the real world,
however, one might rather need a code book for a set of several thousands, or even of several million symbols, like
all the m bits long integers. In certain special cases, one can use an off-the-shelf code like the so-called Golomb’s
codes, or Rice’s codes or others [8,9], but it is in fact rare that the distribution function exactly match a geometric
distribution function. Golomb’s codes are disastrous if used for a distribution that is not geometric! In general, the
distribution is incompletely known at best so it might be hard to derive a standard parametric code for it. And, of
course, one must generally reject the trivial solution of building up a look up table of several million entries in
memory.



Lastly, for the compressed data to be understandable by the decoder, the decoder must know the code book
C. Either one transmits the code book itself or the function p(s). In both cases the expense of doing so when the
code book is large might be so high as to completely lose the gain made in compression. If S has 256 symbols, as it
is often the case, then the cost of transmitting the code book remains modest compared to the cost of transmitting
the compressed data which can be still quite large. While actually having a certain loss of compression due to the
transmission of the code book, it might still be relatively insignificant and thus still give a satisfying result. But
when one is dealing with a very large set of symbols, the code book must also be very large. Even if a very clever
way of encoding the code book is used, it might remain so costly to transmit that the very idea of compressing this
data using a Huffman-like algorithm must be abandoned.

In this paper, to address the problems of adaptivity, memory management and code book transmission
problems, we propose a new algorithm for adaptive Huffman coding. The algorithm allows for very good adaptivity,
efficient memory usage and efficient decoding algorithms. We present our algorithm which consists in three
conceptual parts: set representation, set migration and tree rebalancing. We finally discuss various initialization
schemes and compare our results against the Calgary Corpus and static Huffman coding [3] (the ordinary Huffman
algorithm) and Vitter’s algorithm A [7,12].

1.1. Algorithm M

We will now present an algorithm that is well suited for large sets of symbols. They naturally arise in a
variety of contexts, such as in the ‘deflate’ compression algorithm [15,16] and in JPEG [17]. In the ‘deflate’
compression algorithm, lengths and positions of matches made by a basic LZ77 compressor over a window 32K
symbols long are encoded using a variable length coding scheme thus achieving better compression. In the JPEG
still image compression standard, the image is first decomposed by a discrete cosine transform and the coefficients
are then quantized. Once quantization is done, a scheme, not unlike the one in Fig. 1. [13], is used to represent the
possible values of the coefficients. There are however fewer values possible in JPEG, but still a few thousands.
There are many other situations where a large number of symbols is needed.

The algorithm we now propose uses a tree with leaves that represent sets of symbols rather than individual
symbols and uses only two operations to remain as close as possible to the optimal: set migration and rebalancing.
The basic idea is to put in the same leaf all the symbols that have the exact same probability. Set migration happens
when a symbol moves from one set to an other set. This is when a symbol, seen m times (and thus belonging to the
set of all symbols seen m times) is seen one more time and is moved to the set of symbols seen m+1 times. If the set
of symbols seen m+1 times does not exist, we create it as the sibling of the set of symbols seen m times'. If the set of
symbols seen m times is now empty, we destroy it. Rebalancing, when needed, will be performed in at most
O(-lg p(s) ) operations. Let us now present in detail this new algorithm.

Let us say that we have the symbols representing the set of the integers from 0 to B. The minimal initial
configuration of the tree is a single leaf (which is also the root) containing the set {O,...,B}, to which a zero
frequency is assigned. It can be zero since we don’t work directly with the probability, but with the number of times
a symbol was seen. At that point, the codes are simply the binary representation of the numbers 0 to B. When the
first symbol is seen, say ‘2’, it has a count of 1. Since we don’t have a set of symbols seen exactly 1 time, we create
it. That gives us a tree that has a root node and two leaves. The codes now have a one bit prefix, followed by either

no bits, if it is the (only) symbol in the new set, or Dlg(|{0,l,3,...,B}|)D bits (for any other). As other symbols are seen

for the first time the set of all symbols seen once grows and the set of all possible but yet unobserved symbols
shrinks. When we encounter a symbol a second time, we create the set of symbols seen exactly 2 times, and so on.
This situation is shown in fig. 2. Note that the numbers written on nodes are their weights (a parent’s weight is the
sum of its two children’s weight, and the leaves’ weight are simply the number of time the symbols in its associated
set have been seen so far times the number of symbols in its set). If a region of the tree is too much out of balance,
we rebalance it, starting at the position where the new set was inserted.

"If at the moment of the insertion of node z, the node x has already a sibling, we create a new parent node ¢ in place of node x, such that

its children are the node x and the node z.
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Fig. 1. An example of code for a large set and a hypothetical
distribution.
Fig. 2. Creation of new sets. Assigned codes are to the right of
the sets. The value of x depends of the type of prior one wants to
use for the probability distribution (for e.g., x = 1 is a Laplacian
prior).

An important question is, of course, when do we know it’s time to rebalance the tree? If we look at fig. 3.,
we see that after the insertion of the new set {6}, an internal node has count 5 while it sibling has only a count of 1.
We would like this internal node to be nearer to the root of at least one step since it’s intuitively clear that this node
(and all its children) is far more frequent than its sibling. The rule to ‘shift up’ a node is:

If (the node’s weigth > its sibling’s weight +1) and
(the node’s weight > its uncle’s weight) then shift up that node.

The shifting up itself is, except for the condition, exactly as in a standard, off-the-shelf, AVL tree. Fig. 4.
shows how this operation works. If for a particular node the rule is verified, a shifting up occurs. There might be
more than one shift up. We repeat until the rule ceases to apply or until we reach the root. And, of course, we update
weights up to the root. The algorithm, that we call M, as in ‘migration’ is listed in pseudocode at algorithm 1. The
shift up procedure is given as algorithm 2.

1.2. Asymptotic performance of Algorithm M

The code generated by algorithm M has an entropy within [H(S), H(S)+2 ) when given a sufficiently long
sequence of symbols. Let us explain how one derives this result. First, all codes have two parts: a prefix and a suffix.
The prefix identifies in which subset K [1S the symbol s is. The suffix identifies the symbol within the subset.
The length of the code s, for each symbol s in a subset KIS, given by
I(s) =I(K) +1(sIK) = —1gp(K) —1gp(sIK) = =1gp(s) . We will assign an integer number of bits to both prefix and
suffix. In the algorithm, the ideal code it is approximated by [(s) = (K)+1 (sIK) = Prefix(K) +1gl Kl where

Prefix(K) is the length of the prefix for the set K. This is a very good approximation of /(s) when all the symbols in
the subset K have roughly the same probability and Prefix(K) is near the optimal prefix length.

{0,1,3,7,...,10,12,...B}

Fig. 3. Rebalancing the tree.

Fig. 4. Shifting up subtree A. (a) Exchanging subtree with uncle
subtree, (b) rotation and (c) final state.



Procedure Update_M(a : symbol)

( Procedure ShiftUp(t : pointer to leaf)
q,p :pointers to leaves ; {
while (t is not the root)

p = find(a) ; // Leaf/set containing a {

q = find(p’s frequency + 1) ; // where to t’s weight = t’s right child’s weight +
migrate ? t’s left child’s weight ;

if ( (t’s weight > t’s sibling’s weigth+l) &&
if (g !=0) // somewhere to migrate? (O is NIL) (t’s weight > t’s uncle’s weight))

{

remove a from p’s set ;

p’s weight = p’s weight - p’s frequency
Add a to g's set ;

q’s weight = q’s weight + p’s frequency

then {
q = parent of parent of t ;
exchange t with t’s uncle ;
exchange q’s right and left child ;
Update t’s ancient parent’s weight ;

. }
ShiftUp(q); t = t’s parent ;
= i

If (p = 1) }
remove p from the tree ; '
else ShiftUp(p’s sibling) ;

Algorithm 2. ShiftUp algorithm.

else
{
create a new node t ;

t’s left child is p ; {0

t’s right child is a new node n ; /() (141}

n’s set = {a} ; {-3,2,42,43}

n’s weight = p’s frequency + 1 ;

n’s frequency = p’s frequency + 1 ; {-7,-4,4,...,7}
replace the old p in the tree by t ; {-15,....-8,8....15}
remove a from p’s set ; \(3(47 ~~~~~ -16,16,...47)

p’s weight = p’s weight - p’s frequency ;
{all other values}

=0 Fig. 5. A possible different initial configuration for the tree.
remove p from the tree ;

else ShiftUp(p’s sibling) ;

ShiftUp(t) ;
}
}

Algorithm 1. Algorithm M.

First, we consider the suffixes. All symbols in a set K are equiprobable (given set K) by definition®. One
observes that in that case -1g p( s | K ) is exactly 1g | K |. When we assign a natural code to every symbol s in K this
code will be of length of at most Ulg | K | [ which is never more than one bit too long compared to the optimal code.
A worst case for a suffix is when the number of symbol in this set is 2"+1, for some 7, and in that case we will waste
almost 1 bit. The best case will be when the size of the set is exactly 2™, for some m, for which we will use exactly m
bits (and not waste any).

The prefixes are Shannon-Fano codes for the sets K; — remember that the leaves of the tree are sets and not
individual symbols and that all symbols in a set have the same probability. Since the shift-up algorithm tries to
produce equally weighted subtrees it is essentially a classical Shannon-Fano algorithm from the botfom up instead of
top-down. The Shannon-Fano algorithm isn’t optimal (in the same way Huffman’s algorithm is) but it produces
codes within [H(S), H(S) + 1) of the entropy of the set S = {K},K>,....K,,} [8].

Combining the two results leads to the bounds on entropy of [H(S), H(S) + 2 ). That makes Algorithm M
very interesting especially when we consider that we don’t create as many nodes as algorithm Vitter’s algorithm A.

2 However, one may want to put in the set K; all symbols of approximately the same probability. In that case, the bounds change because
the ‘rounding’ of the codes will be different. The code will not degrade if the optimal code of the least probable symbol of a set is less than one bit

shorter than the optimal code of the most probable. That is, one must satisfy the constraint

—lg min{p(s;|K)} +1g max{p(s;|K)} < 1.



In section 2, Results, we compare the number of nodes created.

1.3. Computational complexity of Algorithm M

Ideally, we would like to have O(1) operations on a set — adding and removing elements in constant time
— but it will be quite good if it is in O(lg k) for a set of k elements. While Anti-AVL trees are used in algorithm M
for the codes themselves, AVL trees might not be a good choice for the internal representation of the sets. AVL trees
do eat a lot of memory — in addition of being a ‘big’ O(Ig n) in time complexity — and the total number of nodes
in the trees (prefix and sets) would then be the same as in any other Huffman-like tree algorithms, that is, 2ISI-1. One
alternative representation is a skip list of intervals and integers. We use interval nodes when there are enough
successive integers (like {1,2,3,4,5,6}) and single integers when it is not (like {3,5,7,11,13}) — at the expense of a
bit to distinguish between the two. The representation we used in our experiments had a quite efficient memory
usage. For e.g., when 3 was added to the set {1,2,4,5} (two intervals, {1,...,2} and {4,...,5}) the resulting set was
represented by only one interval: {1,...,5} which needs only two int rather than five. Savings are greater when the
width of the interval grows. Needless to say that great care must be exercised when one chooses the representation
of the sets. The use of a skip list or and AVL tree as a catalog of intervals give an O(lg n) average case for finding an
interval in a set. The actual operation of adding or removing of an item within a set should be in O(1), thus giving a
total complexity of O(lg k) in worst case for set manipulation, where here £ is the cardinality of the set.

The average update complexity is also in logarithmic time. More precisely, we can show that it is
O(lg p(s) + f(s) + g(s) + h(s,K1,K>)), where p(s) is the probability of the symbol s, and f{s) is the cost of finding in
which set s is (that is, K;), g(s) the cost of finding in which set s will land (K5) and finaly h(s,K;,K>) is the cost of
moving s from set K| to set K,. The f{l) and g([) functions are in O(lg n,), where n, is the number of frequency classes
(sets). We already described h(a,A,B), which is a combination of a removal from a set and an insertion in another
set, which are both O(lg IKl), therefore 4 is also of logarithmic complexity. Now, for the lg p(s) part, we know that
the shift up procedure updates the destination set (which is at depth of Ig p(s)’, where p(s)’ is the new probabiliy of
s) and its source set’s sibling. Since p(s) Lp(s)’, both shift up are O(lg p(s)).

1.4. Initialisation

One way to initialize the algorithm is with a single node whose set contains all possible symbols (of
frequency 1°, of weight B ). But one may also choose to start with several subsets, each having different priors. If we
return to the example in fig. 1, we could build with a priori knowledge, as in fig. 5, an initial solution already close
to what we want, with correct initial sets and weights. That would give a better compression right from the start,
since we would need much less adaptation. That does not imply, however, that we always have to transmit the code
book or the tree prior to decompression. In various schemes the initial configuration of the tree may be standardized
and would therefore be implicit. In our hypothetical example of fig. 1, we can decide that the tree is always the same
when encoding or decoding starts.

1.5. Fast Decoding

Yet another advantage of algorithm M is that it may provide for a faster decoding than the other algorithms.
When we decode the compressed data with the other algorithms, we read the bits one by one as we go down the tree
until a leaf is reached. In algorithm M, however, we don’t have to read all the bits one by one since once we reach a
leaf, we know how many bits there are still to be read and that allows us to make a single operation to get a bit string
which is readily converted into an integer, which in turn is converted into the correct symbol. On most general
processors, the same time is needed to read a single bit as to extract a bit string, since it is generally the same
operations but with different mask values. So the speedup is proportional to the number of bits read simultaneously.
This technique could lead to very efficient decoders when the number of frequency classes is exponentially smaller
than the alphabet size.

* That is, we assume that the distribution is uniform and a Laplacian prior.



2. Experimental Results

We finally present our results and compare algorithm M against Huffman’s algorithm. Table 1. summarizes
the results on the Calgary corpus. The ‘Huffman’ column of Table 1 is the number of bits per symbol obtained when
we use a two pass static Huffman code (that is, that we read the entire file to gather information on the p(s) and then
generate the code book). In one case, we omitted the cost of transmitting the dictionary, as it is often done. In the
other column, namely Huffman*, we took into account the cost of sending the code book, which is always assumed
to be 1K, since with Huffman and M we assumed a priori that each file in this set had 256 different symbols. For
algorithm A, we find a column named ‘algorithm A*’. This is Paul Howard’s version of algorithm A (see [7,12] and
Acknowledgments). In this program the actual encoding is helped by an arithmetic coder. In the columns of
algorithm M, we can see also the number of bits per symbols obtained and we see that they are in general very close
to the optimal Huffman codes, and in most cases smaller than Huffman*. In the ‘nodes’ column we see how many
nodes were in the tree when compression was completed. The ‘Migs%’ column counts, in percent, how many
updates were solved using only set migration. The ‘ShiftUps’ column counts the number of time a node was shifted

up.

For all the experiments, the initial configuration shown in fig. 6. was used since most of the Calgary
Corpus’ files are text files of some kind, to the exception of ‘Geo’, ‘Obj1’, ‘Obj2’ and ‘Pic’ that are binary files.
Here again we stress the importance the initial configuration has for our algorithm. If we examine Table 1, we see
that most of the updates don’t need either set migration nor rebalancing. These updates consist in adding and
removing nodes from the tree. This situation arises when simple migration fails, that is, when the destination set
does not exist or the source set has only one element (therefore needs to be destroyed). We also see that shifting up
in rebalancing is a relatively rare event, which good even if it is not a costly operation.

With Huffman’s algorithm and 256 symbols, one always gets 511 nodes (since it is a full binary tree, we
have 2ISI-1 nodes, counting leaves, for a set S) while this number varies with algorithm M depending on how many
sets are created during compression/decompression. One can see that in the average, significantly less nodes are
created. Instead of 511 nodes, an average of 192 is created by the files of the Calgary Corpus. This is about only
37.6% of the number of nodes created by the other algorithms. When we use 16 bits per symbol (which were
obtained by the concatenation of two adjacent bytes), we find that algorithm M creates an average of 360.6 nodes
instead of an average of 3856.6 with the other algorithms. This is about 9.3% : ten times less. Of course, there exist
degenerate cases where the same number of nodes will be created, but never more.

In Table 2, we present the results, again, but with 16 bits symbols. We supposed that each file of the
Calgary Corpus was composed of 16 bits symbols — words instead of bytes. We compare Vitter’s algorithm A,
static Huffman (both with and without the cost of transmission of the dictionary) and algorithm M.

One may notice that Vitter’s algorithm A is almost always the best when we consider 8 bits per symbols (it
wins over the two other algorithms 13 times out of 18) but that the situation is reversed in favor of algorithm M
when we consider 16 bits per symbols. In the latter situation, algorithm M wins 13 times out of 18. The average
number of bits outputed by each algorithm is also a good indicator. When the symbols have 8 bits, we observe that
Huffman* generates codes that have an average of 5.12 bits/symbols, Algorithm A 4.75 bits/symbols and algorithm
M 5.07 bits/symbols, which leaves algorithm A as a clear winner. However, again, the situation is reversed when we
consider 16 bits symbols. Huffman* has an average of 9.17 bits/symbols, algorithm A 8.97 bits/symbols and
algorithm M generates codes of average length of 8.67 bits/symbols. Here again, algorithm M wins over the two
others.

3. Improvements: Algorithm M*

While algorithm M (and others) uses all past history to estimate p(s), one might want to use only part of
history, a window over the source because of non-stationarity in the data sequence. Let us now present a modified
algorithm M, called algorithm M* that handles windows over the source. The window is handled by demoting a
symbol as it leaves the window. As a symbol leaves the window, we decide that if had until then a frequency m, it is
now has a frequency m-1. The difference between the promotion, or positive update algorithm and the demotion, or



negative update algorithm is minimal. Both operate the migration of a symbol from a set to another. The difference
is that we move a symbol from a set of frequency m to a set of frequency m-1 rather than from m to m+1. If the set of
frequency m-1 exists, the rest of the update is as in algorithm M: we migrate the symbol from its original set to the
set of frequency m-1 and we shift up the involved sets (the source’s sibling and the destination). If the destination
does not exist, we create it and migrate the symbol to this new set. Algorithm 3 shows the negative update
procedure.

The complete algorithm that uses both positive and negative updates is called M*. We will need a
windowed buffer, of a priori fixed length*, over the source. For compression, the algorithm proceeds as follows: as a
symbol a enters the window, we do a positive update (or update_M(a)) and emit the code for a. When a symbol b
leaves the window, we do a negative update (Negative Update M(b)). On the decompression side, we will do
exactly the same. As we decode a symbol a, we do a positive update and insert it into the window. This way, the
decoder’s window is synchronized with the encoder’s window. When a symbol b leaves the window, we do a
negative update (Negative Update_M(b)). Algorithm 4 shows the main loop of the compression program, while
algorithm 5 shows the decompression program.

3.1. Results and Complexity Analysis of M*

We present here the new results. The various window sizes tried in the experiments were 8, 16, 32, 64, 128,
256, 512, and 1024. The results are presented in table 3. For some files, a window size smaller than file size gave a
better result, while for some other, only a window as large as the file itself gave the best results. Intuitively, one can
guess that files that are compressed better with a small window do have non-stationarities and those which do not
compress better either are stationary or do have non-stationarities but that they are not captured: they go unnoticed
or unexploited because either way the algorithm can’t adapt fast enough to take them into account.

Algorithm M* is about twice as slow as algorithm M. While it is still O(lg n,) per symbol, we have the
supplementary operation of demotion, which is O(A(s,K,K>) + 1g n,), where h(s,K;,K>) is the complexity of moving a
symbol from set K; to set K, and n, is the number of sets. Since migration processes are symmetric (promotion and
demotion are identical : one migration and two shift up) algorithm M* is exactly twice as costly as algorithm M.
Since algorithm M* is O(h(s,K,,K>) +1g n;), we will remind the reader that she will want the complexity of
h(s,K,,K>) should be as low as possible, possibly in O(max(lg IK;l, 1g IK:l)), which is reasonably fast®.

4. Conclusion

The prototype program for Algorithm M was written in C++ and runs on a 120 MHz 486 PC under
Windows NT and a number of other machines, like a Solaris SPARC 20, an UltraSPARC and a SGI Challenge. On
the PC version, the program can encode about 70,000 symbols per second when leaves are individual symbols and
about 15,000 symbols/second when they are very sparse sets (worst case: very different symbols in each frequency
class).

We see that the enhanced adaptivity of algorithm M* can give better results than simple convergence under
the hypothesis of stationarity. The complexity of Algorithm M* is the same as Algorithm M’s, that is,
O(h(s,K1,K>) + 1g ny) = O( max(h(s,K,,K>), 1g n,) ) while the so-called hidden constant only grows by a factor of 2. In
our experiments, M* can encode or decode about 10000 to 50000 symbols per second, depending on many factors
such as compiler, processor and operating system. The reader may keep in mind that this prototype program wasn’t
written with any hacker-style optimizations. We kept the source as clean as possible for the reader. We feel that with
profiling and fine-tuning the program could run at least twice as fast, but that objective goes far off a simple
feasibility test.

In conclusion, Algorithms M and M* are a good way to perform adaptive Huffman coding, especially when
there is a very large number of different symbols we don’t have that much memory. We also showed that for
Algorithm M, the compression performance is very close to the optimal static Huffman code and that the bounds

* We do not address the problem of finding the optimal window length in algorithm M*.

® The current implementation of our sets is in worst case O( Isl ), but is most of the time in O(Ig Isl ).



[H(S), H(S)+2) guarantee us that the code remains close enough to optimality. Furthermore, these algorithms are
free to use since released to the public domain [1,2].

| AlgoM
Bits/symb
File Length Huffman* | Huffman Algo N* algoM Nodes | Migs (%) ShiftUps

Bib 111 261 5.30 5.23 5.24 5.33 161 3.92 2374
Book1l 768 771 4.57 4.56 4.61 153 0.62 2494
Book2 610 856 4.83 4.82 491 191 0.94 3570
Geo 102 400 5.75 5.67 5.82 369 25.6 5068
News 377 109 5.25 5.23 5.23 5.31 197 2.00 4651
Objl 21 504 6.35 597 6.19 225 35.88 1091
Obj2 246 814 6.32 6.29 6.40 449 12.04 11802
Paperl 53 161 5.17 5.02 5.03 5.12 171 5.86 1408
Paper2 82199 473 4.63 4.65 4.73 155 312 1152
Paper3 46 526 4.87 4.69 4.71 4.86 147 5.22 978

Paper4 13 286 5.35 4.73 4.80 4.98 109 11.97 523

Paper5 11 954 5.65 497 5.05 5.20 131 16.48 665

Paper6 38 105 5.25 5.04 5.06 5.15 161 8.15 1357
Pic 513216 1.68 1.66 1.66 1.68 169 0.76 1957
ProgC 39611 5.44 5.23 5.25 5.38 177 11.31 1984
ProgL 71 646 491 4.80 4.81 4.92 147 432 1442
ProgP 49 379 5.07 4.90 491 5.00 159 7.13 1902
Trans 93 695 5.66 5.57 5.43 5.69 189 6.06 2926

average 5.12 4.95 4.75 5.07

Table 1. Performance of Algorithm M. The Huffman* column represents the average code length if the cost of transmission of the code
book is included, while the Huffman column only take into account the codes themselves. Algorithm A* is Vitter’s algorithm plus
arithmetic coding. Algorithm M does not transmit the code book, the bits/s are really the averages of code length for Algorithm M. The
number of nodes with the static Huffman (Huffman, Huffman*) is always 511 — 256 symbols were assumed for each files. Grey entries
correspond to unavailable data.

Huffman | | Algo M
Bits/symb
File Length Symbols Nodes Huffman* | Huffman algo A\* algo M Nodes
Bib 111 261 1323 2645 8.96 8.58 10.48 8.98 423
Bookl1l 768 771 1633 3265 8.21 8.14 8.35 873
Book2 610856 | 2739 5477 8.70 8.56 8.81 835
Geo 102400 | 2042 4083 9.86 9.22 9.74 281
News 377109 | 3686 7371 9.61 9.30 9.62 9.66 713
Objl 21504 3064 6127 13.72 9.17 9.65 97
Obj2 246 814 | 6170 12339 9.72 8.93 9.40 483
Paperl 53 161 1353 2705 9.45 8.64 9.47 9.13 281
Paper2 82199 1121 2241 8.57 8.13 8.57 8.48 369
Paper3 46 526 1011 2021 8.93 8.23 8.94 8.68 281
Paper4 13 286 705 1409 9.83 8.13 9.84 8.81 131
Paper5 11 954 812 1623 10.60 8.43 10.60 9.13 113
Paper6 38 105 1218 2435 9.63 8.61 9.66 9.14 231
Pic 513216 2321 4641 2.53 2.39 3.74 2.47 273
ProgC 39 611 1443 2885 9.97 8.80 9.97 9.37 221
ProgL 71 646 1032 2063 8.46 8.00 8.48 8.37 315
ProgP 49 379 1254 2507 8.86 8.05 8.89 8.56 223
Trans 93 695 1791 3581 9.52 8.91 9.34 9.39 347
average 9.17 8.23 8.97 8.67

Table 2. Comparison of algorithms with a larger number of distinct symbols. Grey entries correspond to unavailable data.



Procedure Negative_Update_M(a : symbol) while (not eof (f)
{ {
q,p :pointers to leaves ; read c from £f;
put ¢ in window/buffer ;

p = find(a) ; // Leaf/set containing a
q = find(p’s frequency - 1) ; // were to migrate ? w = code for c ;
if (q !=0) // somewhere to migrate ? Emit w into £2 ; // output file
{
remove a from p’s set ; Update_M(c) ;
p’s weight = p’s weight - p’s frequency
Add a to q’'s set ; get d from the other end of window/buffer ;
q’s weight = q’s weight + p’s frequency Negative_Update_M(d) ;
}
ShiftUp(q);
1£ (p = 0O) Algorithm 4. Encoding loop.

remove p from the tree ;
else ShiftUp(p’s sibling) ;
for i=1 to w
else {
{
create a new node t ;
t’s left child is p ;
t’s right child is a new node n ;
n’s set = {a} ;
n’s weight = p’s frequency - 1 ;
n’s frequency = p’s frequency - 1 ;
replace the old p in the tree by t ;

c= Decode from f;
Update_M(c) ;

put ¢ in window/buffer ;
output c into destination file ;

get d from the other end of window/buffer ;

Negative_update_M(d) ;
remove a from p’s set ; // t’s left child }

p’s weight = p’s weight - p’s frequency ;
Algorithm 5. Decoding loop.
£ (p = 0O)
remove p from the tree ;
else ShiftUp(p’s sibling) ;

(1) (32...127)
ShiftUp(t) ; @
} ’ (0 {0....31,128,...255)

Algorithm 3. Negative update algorithm. Fig. 6. Initial configurations for the tests.
M* window size

File Size 8 16 32 64 128 256 512 1024 M Huff*
BIB 111261 5.87 5.50 5.49 5.42 5.37 5.35 5.31 5.29 5.33 5.30
BOOK1 768771 4.86 4.73 4.66 4.66 4.64 4.63 4.63 4.62 4.61 4.57
BOOK2 610856 5.01 4.90 491 4.90 4.90 4.88 4.87 4.93 491 4.83
GEO 102400 7.55 7.60 7.52 7.07 6.83 6.71 6.24 6.14 5.82 5.75
NEWS 377109 5.38 5.33 5.40 5.31 5.30 5.31 5.33 5.30 5.31 5.25
OBJ1 21504 7.92 7.39 7.02 6.92 6.70 6.58 6.51 6.46 6.19 6.35
OBJ2 246814 7.79 7.09 6.71 6.52 6.47 6.48 6.48 6.43 6.40 6.32
PAPERL 53161 5.61 5.41 5.29 5.19 5.16 5.13 5.15 5.21 5.12 5.17
PAPER2 82199 5.11 4.86 471 4.76 4.71 4.73 4.83 4.74 4.73 4.73
PAPER3 46526 5.18 4.93 4.87 4.81 4.81 4.82 4.79 4.79 4.86 4.87
PAPER4 13286 5.54 5.18 5.15 5.03 4.93 5.00 4.97 4.96 4.98 5.35
PAPERS |11954 5.93 5.47 5.35 5.26 5.24 5.25 5.20 5.25 5.20 5.65
PAPER6  |38105 5.81 5.38 5.42 5.25 5.30 522 5.26 5.19 5.15 5.25
PIC 513216 1.78 1.72 1.71 1.70 1.70 1.68 1.68 1.68 1.68 1.68
PROGC 39611 5.87 5.69 5.63 5.45 5.41 5.47 5.37 5.40 5.38 5.44
PROGL 71646 5.14 5.12 4.95 4.92 4.95 4.98 4.99 4.89 4.92 491
PROGP 49379 5.61 5.28 512 5.13 5.03 5.02 5.03 5.02 5.00 5.07
TRANS 93695 6.29 5.86 5.75 5.75 5.69 5.71 5.70 5.64 5.69 5.66

average




Table 3. Results of Algorithm M+ against Huffman.
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