An Optimizing Lossy Generalization of LZW

Steven Pigeon
Université de Montréal
pigeonQiro.umontreal.ca

Abstract

We present a lossy generalization of Welch’s LZW algorithm. We first
discuss two lossy generalizations of LZW. The two variations either try
to maximise compression without worrying about image quality, or try
to maximise image quality without worring too much about compression.
We then present a new algorithm, also lossy, which optimizes compression
according to an objective function supplied by the user, that enable him
to balance between compression ratio and image quality.

1 Why a Lossy Generalization of LZW?

LZW [Welch84] is an interesting algorithm. It is simple to implement, fast
when well implemented, and is present in many standards and commercial prod-
ucts. For example, LZW is the compression algorithm used in Compuserve’s
GIF87a/89aimage format [Comp89|, which in turn is supported by web browsers
and countless image processing software. While it may be critical for some ex-
pensively acquired images (such as deep space probe data) to be compressed
losslessly, it makes little sense for most other images.

Others have suggested using palette reduction as a mean of reducing an
image’s size, but this technique must be rejected. The idea behing palette re-
duction is the following. Say we start from a 256 entry palette, and we go down
to 64 entries. We should benefit from a 25% reduction of file size, plus from
any repetitions that would now occur as a result of the reduction of palette:
the probability that two adjacent pixels have the same value should be higher
than it was before. But it is not so. First, by reducing severy the image palette
size, we introduce important color aberration, secondly, this reduction in the
number of distinct colors calls for a mean of compensation, and it is usually
dithering. While dithering may be visually adequate, it fouls up compression,
since patterns that would be repeating are contaminated with what appears to
be random noise. This noise is the result of the error propagation dithering
algorithm.

We proposed in 1995 a variant [Pigeon95] that searches greedily in its dic-
tionary for possible matches. Another lossy algorithm was proposed by Chiang
in [Chiang98]. In basic LZW, one searches for the longest string in the dictio-
nary that exactly match the input. In an image compression application, the
dictionary contains strings of pixels rather than, say, strings of letters. In the
particular case of GIF image compression, the pixels are in fact 1 < n < 8 bits
integers pointing into a look-up table of at most 256, 24 bits colors. Entries

in the dictionary are therefore strings of these integers. While in basic LZW,
only exact matches are allowed, in the Pigeon and Chiang variants, differences
between input and a dictionary entry are acceptable. One can use a pixel in-
stead of another if the color difference is within a specified tolerance. Neither
algorithms optimize explicitely for compression nor for image quality. They can
lead to both bad compression and bad image quality. In this short paper, we
present another variant that choose matching strings in the dictionary in a way
that both optimize for compression and image quality.

The algorithms we describe use a metric that defines the similarity between
two symbols or two strings of symbols. The metric used depends on the nature
of the symbols forming strings. If, as in our case, the strings are pixels (tripplets
of the form (r,g,b), with r,g,b € Z,,) the metric will be some color difference
mesure, for e.g.

la = bl = \/v2(ar — b,)? + 12 (g — b,)2 + 73 (as — by)? (1)

where v, ~ 0.299, v, = 0.587, v = 0.114, for two pixels a and b. In eq. (1) a,
stands for the red component of pixel a, a, for its green component and a; for
its blue component. Eq. (1) is considered a good linear approximation of the
eye’s response to color differences in terms of brightness. For strings of pixels,
we can define the color difference to be

|s]
Is = wlm =) Isi = wilm (2)

where s; stands for the i-th pixel of string s. This metric gives the total percep-
tual brightness difference between strings of pixels. More sophisticated metrics
can be used, such as metrics based on other color spaces or a function based on
MacAdam’s just noticeable color differences (also known as MacAdam’s ellipses
[MacAdam42]). The metric is important because it controls the compressed
image quality.

2 The Original LZW algorithm

The original LZW algorithm was proposed in [Welch84]. This algorithm pro-
cesses its input sequentially, from first to last symbol. The input is compared to
all the strings contained in the dictionary at that time. The string in the dictio-
nary that match the longest part of the input is chosen. The matching string is
removed from the input and a code representing its index into the dictionary is
output in its place. A new string, formed with the last matching string and the
first input symbol that did not match is added to the dictionary. The process
repeats until all symbols are processed. This scheme permits compression if
the strings that match are significatively longer than the index codes. Adaptive
coding strategies that take into account index probabilities have lead to better
compression than GIF87a/89a scheme where code length is fixed to [lg|Dy|]

(the number of bits necessary to represent any number in 0,1,...,|D;| — 1).

While the efficient implementation of such as compression scheme is worth
discussion, it is not the object of the present paper. We will use an notation to
describe the operations of searching in the dictionary, updating the dictionary
and updating position in the input, but hides the internals of each operation. We
will not concern ourselves with coding. Let the shortcut notation I’ represent
the input segment {I,, I4y1,...,lp}. Let ¥ = {01,09,... ,0x} be our symbol
alphabet, and |¥| the number of distinct symbols in the alphabet. Let D; be
the dictionary state at time ¢ and p(t) the position in the input at time ¢. At
t = 0, the dictionary contains |X| strings, each one containing a different symbol
0;. This is ensure that a segment of the input always match something in the
dictionary, even if it is a degenerate string of length one. This removes the need
for an escape code to introduce new symbols into the dictionary when they are
first met in the input. The position p(0) points to the first symbol of the input.
The string that is chosen from the dictionary at time ¢ is given by

§= argmax{seDt|s=1£((:)>+\s|—1}|5| 3)

which is only the longest string in the dictionary that matches the input. The
dictionary is updated by

Dt+1 = Dt U {§ZC} (4)

where ¢ = I,4)4|3 and a : b stands for concatenation. Update is made by
adding a new string to the dictionary. The new string is the last matched string
concatenated with the first symbol that did not match. This symbol prevented
any string in D, to match the input; we are sure that § : ¢ is not already in the
dictionary, and we add it in the dictionary, since it is part of the input, so it
can be used if encountered again. The position is updated by

p(t+1) =p(t) + (3| (5)

In the compressed stream, a code for § is emitted. During decompression,
the indexes are read from the compressed stream one by one. A string s; is found
at time ¢ indexed by the code read from the compressed stream. This string
s¢ is output. The index for the next string, s;11 is decoded. The dictionary is
then updated by

Dyy1 = Dy U {s;: first(siy1)}

where first(w) returns the first symbol of the string w, after what s¢11 is ouput.
This process is repeated until no more indexes can be read.

3 Pigeon and Chiang Variants

In these variants, rather than looking for the longest exact match between the
dictionary and the input, we will be looking for a tolerable matches under a given

metric m. In Chiang’s variant, that he calls LLZW, a string matches if all of its
symbols are tolerably different than the input under the metric m. Tolerance is
controled by a possibly adaptive threshold value, say 6, set by the user. Under
Chiang’s variant, any 6-tolerable string in the dictionary is a possible match. A
string s is said to be #-tolerable to a string w iff

Is — w|m < 0K

for some constant K. Chiang suggest to chose K such that it is proportional

to the (brightness) variance of the current local region of the image. Eq. 3 is
replaced by

§= argmax{seDt|\|s—15((f))+|5|_1\|m§9K}|S| (6)

Chiang’s variant picks the longest f-tolerable string in the dictionary. This

can be desastrous to image quality, since the longest matches can be quite far

from the best quality matches, which in turn are more likely to be shorter. In
Pigeon’s variant, a string is said to be ¢-tolerable iff

8
A, (s —wil <6) g

However, the data structure used in [Pigeon95] being a trie, each symbol is
matched one at a time as the algorithm walks along the trie. A trie is simply a
k-ary tree, in which each path from the root to a node represent a string in the
dictionary. Fig. 3 shows such a trie. The algorithm goes down the trie by going
to the next reachable node that have the best score. At input position p(t)+:, we
are positioned on a node of depth 4. This current node (determined by previous
decisions) can be either a leaf or have up to |X| sons. If it’s a leaf, then it repre-
sent a ¢-tolerable string, and this string is the match. If it is not a leaf, the next
node to explore is chosen as the node containing the symbol having the smallest
difference under metric m with the input. Let T; be the current node and T; ;
its j-th son. The next match is given by T;y1 = argminz, ; |Ip)4iv1 — Tijlm-
If T; 41 is ¢-tolerable, the algorithm continues to search the trie at node Tj41.
If T; has no ¢-tolerable son, the match stops at Tj;.

As it proceeds in a greedy fashion, the algorithm is prevented from discov-
ering globaly longer and/or less noisy strings that may hide behind a localy
bad but ¢-tolerable score. This limits compression since the strings that have a
better quality are likely to be shorter than the longest ¢-tolerable string in the
dictionary, while it gives better image quality for |s|¢ comparable in magnitude
to 6.

4 An Optimizing Variant

Chiang’s and Pigeon’s variants either imperil compression ratio or image quality.
A better algorithm would be one that tries to maximize some objective function

Figure 1: Trie containing strings a, aa,
aaa, aab, aaba, aabdb, aabd, ab and ac,
therefore representing the dictionary
{a, aa, aaa, aab, aaba, aabd, aabd, ab, ac}.
Each node can end a string. The total
number of representable strings equals
the number of nodes in the trie.

over the dictionary. Let call this algorithm P-LLZW to distinguish it from
Chiang’s LLZW and Pigeon’s first variant, G-LLZW (for greedy LLZW). The
objective function in algorithm P-LLZW should compute an objective score that
takes into account both compression ratio and image quality. Let f, 4(s,w) be
such an objective function that takes into account both compression and image
quality. Eq. 3 now becomes

5 = argmax f,g(s, I ") (8)
SED;

Dictionary is still updated according to eq. 4 and position to eq. 5. Eq. 8 is
solved by dynamic programming or another efficient technique such as minimax
search, depending on the data structure holding the dictionary and the nature
of fm,4. You may wish to have fp, 4 such that

fm,o(s:¢,wid) = fm,g(s,w) + Wfm,g(c, d) (9)

so the optimality principle applies and that dynamic programming and other
search methods are possible. The objective function f,;, 4 must be chosen care-
fully to get interesting results. It can be a combination of the form

Fm,p(8,w) = A1gp, (8) — A2hum,¢(s, w)

for a weighting constants A; and A\y. The function gp, (s) gives a score according
to the length of the match, that is, the compression ratio. This would involve
the length of the code that would be output for s at time ¢, which in turn
depends on the state of the dictionary at time ¢, D;. The function hy,, (s, w)
uses the metric m and the threshold ¢ to compute a quality score. hg,, (s, w)
is 0 when the match is perfect (s = w), and is infinity when the match is not
¢-tolerable. This will ensure that the algorithm finds only ¢-tolerable matches
in the dictionary. However, the rate at which h., 4(s,w) goes to infinity can
be in such a way to allow “soft ¢-tolerance”, by which a string that is (¢ + €)-
tolerable does not have an infinite penalty associated to it but only somewhat
greater than if it were only ¢-tolerable.

5 Results of Algorithm P-LLZW

We used a trie as the dictionary data structure, as in earlier implementations,
and we used a depth-first search in the trie, pruning only when the threshold ¢

was exceeded (as in eq. 7). This leads to an algorithm whose worse case is linear
in the total number of symbols contained in the dictionary. We tried various
objective functions:

Fms(s,w) = Als| = (1 =)]s — w|m
5]

" (s,w) = A —1=XN|s—-w
for various A\. However, we chose
Fm,p(s,w) = s[> = (1 =) L|s — w|m (10)

where L is a constant that depends on the metric m and A = % We used the
metric described in eq. (1) and eq. (2), assuming that each of the components
varied from 0 to 255 and this gives L = 1 in eq. (10).

Results are given in Table 1. With objective function eq. (10), it is the
parameter ¢ that control the compression quality and ratio. The signal to noise
ratio (SNR) was computed using the metric and the following formula

(7r5:(1) + 745i(9) + Ye5:(b))?

2 llsi — 8il2,

|s]
SNR(s,3) = 10log;q Lint

where here s and § represent the whole original image and the whole recon-
structed image, respectively. The SNR of various images give an indication on
how colors and brightness are preserved in the P-LLZW compressed images. A
SNR above 30 dB is considered good. Above 40 dB, it is considered excellent.
Under 25 dB serious degradations are visible. As one can see from table 1, P-
LLZW gives some surprisingly good results, as with image “P-Boxes” where the
BPP goes from 3.7 to 1.4 while maintaining a SNR of 34 dB. Reducing the bit
rate by one bit per pixel gives excellent image quality, a SNR above 40 dB.

6 Conclusion

The encoder proceeds differently that the standard LZW algorithm that always
satisfies eq. (3). The encoder in P-LLZW takes different decisions than the stan-
dard LZW algorith, because it satisfies eq. (8) rather than eq. (3) as it searches
through its dictionary for a match. However, the algorithm is decode compatible
with the standard LZW algorithm. This means, our implementation is decode
compatible with standard GIF readers. Files produced by our implementation
are readable by any web browser or any other image processing software that
has a GIF loader and complies to the GIF89a standard. This makes algorithm
P-LLZW a viable alternative to basic, standard GIF encoders.

P-LLZW

8 BPP File Dimensions | Raw Gif Gif | ¢ | Size BPP | SNR
Size Size BPP

| “NY Cargo” [1279 x 865 | 1.IM | 766.8K | 5.7 [10 | 600K | 4.5 | 34 4s

3 | 617K | 4.6 47 a8

| “Cat” | 320 x 200 [64000 [564K [7.2 |10] 252K|3.2 |30

4 49.1K| 6.29 | 44 a8

| “100 Francs” [| 3306 x 1824 [5.9M [35M [48 [10[2M |28 |3las

3 3.3M | 4.6 48 d¢B

| “Jupiter”]| 3287 x 2475 [79M [45M |46 [10]22M |23 |3l
4 [38M[39 [434s
| “Lagaffe”]| 2550 x 3417 [85M [5.0M [48 [10[25M |24 | 324s

4 3.9M | 3.8 40 d¢8

[“New River” || 2428 x 6887 | 16.7M | 7.6M__ | 3.7 | 10 | 43M | 2.15 | 35 4s

4 71M | 3.6 45 dB

| “Forest” | 1948 x 2966 | 56M [41M |59 | 10| 2.8M [28 | 29s
4 [39M [5.7 [404s
| “P-Boxes” [2400 x 3156 | 74M [34M [37 [10 | 1IM [12 | 344

4 24M | 2.7 43 d¢8

| “Whitman” [| 1180 x 2192 [256M [1.5M [49 [10[993K [3.1 | 374s

4 1.4M | 4.5 55 d8

Table 1: Results with the metric m in eq. (1) and eq. (2) and the objective
function described in eq. (10). ¢ ranges from 0 to 255/3 rather than between
0 and v/3. ¢ = 10 implies that the tolerable error is at worst ~ 3.9% of the
dynamic range. The images are all natural images or scanned printed material
(at 300 DPI).

One can change the objective function to suit his own needs while remaining
compatible with a standard decoder. The algorithm complexity depends on the
metric and the objective function. In our implementation, the complexity of
search is upper-bounded by the total number of symbols in the dictionary. The
overall complexity is then O(Dpaz X S), where Dyyq, is the maximum number
of symbols contained by the dictionary (in GIF implementation, it is at most
4096, including the two reserved control symbols) and S is the length of the
string to compress.

While the algorithm tries to optimize compression using the objective func-
tion, it remains sub-optimal. A truly optimal algorithm would not only search
for the best match at time ¢ under some objective function, it would do so con-
sidering all possible choices at previous times and at future times. Since the
decision took at time ¢ impacts on further decisions, one cannot be sure that
any individual decision is optimal unless he considers all possible decisions over
all possible times and picks the decision path that optimize globaly compres-
sion and image quality, according to his objective function. This, although not
impossible to implement, would ask for an unacceptable amout of computation

for maybe not such a great gain. The resulting algorithm would be at least
O(D% . x S), even if it is amenable to dynamic programming,.

In conclusion, this algorithm, P-LLZW, is a good alternative to basic LZW
when losslessness is not necessary. It is better than other simple greedy algo-
rithm that do not optimize for both compression and image quality, such as the
two algorithms we presented as prior work. It can also be used with different
objective functions to meet different needs. It is also possible to implement the
algorithm in such a way that it is compatible with an existing decoder (weither
it is image data or some other kind of data). This means that it is not limited
to GIF: it could be used in any compression utilty that uses LZW. The differ-
ence with GIF and some other data format using LZW compression is likely to
be only in the way in which the indexes are encoded in the compressed data
stream.

References

[Chiang98] Loben Chiang, untranslated thesis title, City University of Hong
Kong, August 1998

[Comp89] The Graphics Interchange Format, v89a, Compuserve Incorporated,
Columbus, Ohio, 1990

[MacAdam42] D.L. MacAdam, Visual sensitivities to color differences in day-
light, Journal of the Optical Society of America, v32, pp. 247-273, 1942

[Pigeon95] Steven Pigeon, FLATLAND, ou comment réduire une image GIF en
modifiant l’algorithme LZW, Journal I'Interactif, March 1996

[Welch84| Welch, Terry A., A technique for high-performance data compression,
Computer, June 1984, pp. 8-19

